77范文网 - 专业文章范例文档资料分享平台

二次函数重难点突破超级讲义

来源:网络收集 时间:2019-04-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点 二次函数考点分析培优

核心知识点:

★★★二次函数的图像抛物线的时候应抓住以下五点:

开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

2

★★二次函数y=ax+bx+c(a,b,c是常数,a≠0)

bb4ac?b2一般式:y=ax+bx+c,三点:顶点坐标(-,),对称轴x=-,最值

2a2a4a

2

顶点式:y=a(x-h)+k,顶点坐标对称轴:顶点坐标(h,k),对称轴x=h

2

交点式:y=a(x- x1)(x- x2),(有交点的情况)与x轴的两个交点坐标x1,x2 ,对称轴为h?

★★★a b c作用分析

│a│的大小决定了开口的宽窄,│a│越大,开口越小,│a│越小,开口越大,

x1?x2 2a,b的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y轴,当a,b同号时,对称轴x=-即对称轴在y轴左侧,当a,b?异号时,对称轴x=-

b<0,2ab>0,即对称轴在y轴右侧,(左同右异y轴为0) 2ac?的符号决定了抛物线与y轴交点的位置,c=0时,抛物线经过原点,c>0时,与y轴交于正半轴;c<0时,与y?轴交于负半轴,以上a,b,c的符号与图像的位置是共同作用的,也可以互相推出.

中考分考点分析

顶点式中考一般式与交点式中考要点专题 图数关系+增减性专题 与方程不等式专题+与坐标轴交点专题 形积专题(中考重点) 应用专题(中考重点) 动点+存在性专题(中考重点) 1. 二次函数解析式及定义型问题(顶点式中考要点) 1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是y?(x?1)?2则原二次函数的解析式为

2

2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x相同,这个函数解析式为________。 3.如果函数y?(k?3)xk2?kx?1是二次函数,则k的值是______

24.(08绍兴)已知点(x1,y1),(x2,y2)均在抛物线y?x?1上,下列说法中正确的是( )

A.若y1?y2,则x1?x2 B.若x1??x2,则y1??y2C.若0?x1?x2,则y1?y2 D.若x1?x2?0,则y1?y2

22y?x?bx?cy?x?2x?3,5.(兰州10) 抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为

2?3k?2则b、c的值为( ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线y?(m?1)x?(m?3m?4)x?5以Y轴为对称轴则。M=

7.二次函数y?ax?a?5的图象顶点在Y轴负半轴上。且函数值有最小值,则m的取值范围是 8.函数

222y?(a?5)x2a2?4a?52?2x?1, 当a?_______时, 它是一次函数; 当a?_______时, 它是二次函数.

9.抛物线y?(3x?1)当x 时,Y随X的增大而增大 10.抛物线y?x?ax?4的顶点在X轴上,则a值为_____

1

五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点 ★11.已知二次函数y??2(x?3)2,当X取x1和x2时函数值相等,当X取x1+x2时函数值为 12.若二次函数y?ax2?k,当X取X1和X2(x1?x2)时函数值相等,则当X取X1+X2时,函数值为 13.若函数y?a(x?3)2过(2.9)点,则当X=4时函数值Y= ★14.若函数y??(x?h)2?k的顶点在第二象限则,h 0 ,k 0 15.已知二次函数当x=2时Y有最大值是1.且过(3.0)点求解析式?

16.将y?2x2?12x?12变为y?a(x?m)2?n的形式,则m?n=_____。

★17.已知抛物线在X轴上截得的线段长为6.且顶点坐标为(2,3)求解析式?(讲解对称性书写) 2、一般式与交点式中考要点 218.如果抛物线y=x-6x+c-2的顶点到x轴的距离是3,那么c的值等于( ) A 8 B 14 C 8或14 D -8或-14

2

19.二次函数y=x-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取( ) A 12 B 11 C 10 D 9

20.若b?0,则二次函数y?x?bx?1的图象的顶点在 ( )A第一象限B第二象限 C第三象限D第四象限

2

21.不论x为何值,函数y=ax+bx+c(a≠0)的值恒大于0的条件是( ) A.a>0,△>0 B.a>0, △<0 C.a<0, △<0 D.a<0, △<0

★22.已知二次函数y?(a?1)x2?3x?a(a?1)的图象过原点则a的值为

23.二次函数y?x2?3x?4关于Y轴的对称图象的解析式为 关于X轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为

24. 二次函数y=2(x+3)(x-1)的x轴的交点的个数有__个,交点坐标为_______。

25.已知二次函数y?ax?2x?2的图象与X轴有两个交点,则a的取值范围是 26.二次函数y=(x-1)(x+2)的顶点为___,对称轴为 _。

2

27.抛物线y=(k-1)x+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____ 28.若二次函数y?2x2?6x?3当X取两个不同的值X1和X2时,函数值相等,则X1+X2= 2y?x?2x?a的顶点在x轴的下方,则a的取值范围是( ) 29.若抛物线

A.a?1 B.a?1 C.a≥1 D.a≤1

122

30.抛物线y= (k-2)x+m-4kx的对称轴是直线x=2,且它的最低点在直线y= -+2上,求函数解析式。

222

31.已知二次函数图象与x轴交点(2,0)(-1,0)与y轴交点是(0,-1)求解析式及顶点坐标。

2

32.y= ax+bx+c图象与x轴交于A、B与y轴交于C,OA=2,OB=1 ,OC=1,求函数解析式

32—35 ★★★★★抛物线y??x?6x?5与x轴交点为A,B,(A在B左侧)顶点为C.与Y轴交于点D (1)求△ABC的面积。

(2)若在抛物线上有一点M,使△ABM的面积是△ABC的面积的2倍。求M点坐标(得分点的把握)

2

2五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点 (3)在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

(4)在抛物线上是否存在一点P,使四边形PBAC是等腰梯形,若存在,求出P点的坐标;若不存在,请说明理由 3、二次函数图象与系数关系+增减性 36.二次函数y?ax2?bx?c

图象如下,则a,b,c取值范围是

2

37已知y=ax+bx+c的图象如下, 则:a____0 b___0 c___0

a+b+c____0,

a-b+c__0 2a+b____0 2

b-4ac___0 4a+2b+c 0

(第36题图)

(第37题图)

(第38题图)

38.二次函数y?ax2?bx?c的图象如图所示.有下列结论:

2①b?4ac?0;②ab?0;③a?b?c?0;④4a?b?0;⑤当y?2时,x等于0.

⑥ax?bx?c?0有两个不相等的实数根⑦ax?bx?c?2有两个不相等的实数根 ⑧ax?bx?c?10?0有两个不相等的实数根⑨ax?bx?c??4有两个不相等的实数根 其中正确的是( )

39.(天津市)已知二次函数y?ax?bx?c的图象如上图所示,下列结论:

① abc?0;② b?a?c;③ 4a?2b?c?0;④ 2c?3b;⑤ a?b?m(am?b),(m?1的实数) 其中正确的结论有( )。

yA. 2个 B. 3个 C. 4个 D. 5个

40.小明从右边的二次函数y?ax?bx?c图象中,观察得出了下面的五条信息:

①a?0,②c?0,③函数的最小值为?3,④当x?0时,y?0,⑤当0?x1?x2?2时,y1?y2. 你认为其中正确的个数为( )

A.2 B.3 C.4 D.5

0 41.已知二次函数y?ax2?bx?c,其中a,b,c满足a?b?c?0和9a?3b?c?0 ,则该二次函数图象的对称轴是直线 .

2

42.直已知y=ax+bx+c中a<0,b>0,c<0 ,△<0,函数的图象过 象限。

21351y?x?4x?5的图象上的三点, 43.若A(?,y1),B(?,y2),C(,y3)为二次函数

444y1y2y32222222 x?3则,,的大小关系是( )

y1?y2?y3 B.y2?y1?y3 C.y3?y1?y2 D.y1?y3?y2

244.在同一平面直角坐标系中,一次函数y?ax?b和二次函数y?ax?bx的图象可能为( )

A.

yOA

yxOB

yxOC

yxOD

3

x五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点

45.二次函数y?ax2?bx?c的图象如图所示,则直线y?bx?c的图象不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

y 2

46.抛物线y=ax+bx+c的图象如图,OA=OC,则 ( )

(A) ac+1=b (B) ab+1=c (C)bc+1=a (D)以上都不是 C A O x 47.已知二次函数y=ax+bx+c,且a<0,a-b+c>0,则一定有( ) A b?4ac >0 Bb?4ac=0 Cb?4ac<0 Db?4ac≤0

2

48.若二次函数y=ax+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是 ( )

(A)01 (C) 1

22222yO 45题图 x0)、(x1,49.(10包头)已知二次函数y?ax2?bx?c的图象与x轴交于点(?2,0),且1?x1?2,与y轴的正半轴的交2)的下方.下列结论:①4a?2b?c?0;②a?b?0;③2a?c?0;④2a?b?1?0.其中正确结论的个数点在(0,是 个.

2

50.(10 四川自贡)y=x+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )。A.a=5 B.a≥5 C.a=3 D.a≥3 4、二次函数与方程不等式 222

51.y=ax+bx+c中,a<0,抛物线与x轴有两个交点A(2,0)B(-1,0),则ax+bx+c>0的解是____________; ax+bx+c<0的解是____________

2

52.已知二次函数y=x+mx+m-5,求证①不论m取何值时,抛物线总与x轴有两个交点;②当m取何值时,抛物线与x轴两交点之间的距离最短。

53.如果抛物线y=

122

x-mx+5m与x轴有交点,则m______ 2

54.(大连)右图是二次函数

2

y1=ax+bx+c和一次函数y2=mx+n的 图像,?观察图像

写出y2≥y1时,x的取值范围_______.

55. (10山东潍坊)已知函数y1=x与函数y2=-

2

1x+3的图象大致如图,若y1<y2,则自变量x的取值范围是( ). 233<x<2 B.x>2或x<- 2233C.-2<x< D. x<-2或x>

22A.-

56. (10江苏 镇江)实数X,Y满足x?3x?y?3?0则X+Y的最大值为 .

2

57.(10山东日照)如图,是二次函数y=ax+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),

2

则由图象可知,不等式ax+bx+c<0的解集是 .

2 4

五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点 5、形积专题

58—63.(中考变式)如图,抛物线y??x2?bx?c与x轴交与A(1,0),B(-3,0)两点,顶点为D。交Y轴于C (1)求该抛物线的解析式与△ABC的面积。

(2)在抛物线第二象限图象上是否存在一点M,使△MBC是以∠BCM为直角的直角三角形,若存在,求出点P的坐标。若没有,请说明理由

.(3)若E为抛物线B、C两点间图象上的一个动点(不与A、B重合),过E作EF与X轴垂直,交BC于F,设E点横坐标为x.EF的长度为L,

求L关于X的函数关系式?关写出X的取值范围?

当E点运动到什么位置时,线段EF的值最大,并求此时E点的坐标?

.(4)在(3)的情况下直线BC与抛物线的对称轴交于点H。当E点运动到什么位置时,以点E、F、H、D为顶点的四边形为平行四边形?

.(5)在(5)的情况下点E运动到什么位置时,使三角形BCE的面积最大?

5

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库二次函数重难点突破超级讲义在线全文阅读。

二次函数重难点突破超级讲义.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/571820.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: