77范文网 - 专业文章范例文档资料分享平台

《离散数学》习题集(8)

来源:网络收集 时间:2019-04-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第三章 二元关系

3.1 基本概念

1. 用列举法表示下列A?B上的二元关系S:

(a) A?{0,1,2},B?{0,2,4},S?{?x,y?|x,y?AB};

(b) A?{1,2,3,4,5},B?{1,2,3},S?{?x,y?|x?y2?x?A?y?B}。 2. 设A?{0,1,2,3,4},试用列举法表达由下列谓词确定的A上的n元关系,如果是二元关

系,画出其关系图。 (a) P(x)?x?1; (b) P(x)?3?2; (c) P(x)?2?3; (d) P(x,y)?x?y?4;

(e) P(x,y)??k(x?ky?k?2); (f) P(x,y,z)?x2?y?z。 3. 对下列关系R,求出关系矩阵MR:

(a) A?{1,2,3},R?{?2,2?,?1,2?,?3,1?}; (b) A?{0,1,2,3},R?{?x,y?|x?2?y?1};

(c) A?{5,6,7,8},B?{1,2,3},R?{?x,y?|x?A?y?B?3?x?y?y}; (d) A?{0,1,2,3,4,5,6},R?{?x,y?|x?y?x是质数}。 4. 对下列每一个N上关系R给出一归纳定义,用你的定义证明x?R。 (a) R?{?a,b?|a?b},x??3,1?; (b) R?{?a,b?|a?2b},x??6,3?; (c) R?{?a,b,c?|a?b?c},x??1,1,2?。

第36页 共53页

5. 设A?{1,2,3,4},R?{?1,2?,?2,4?,?3,3?},S?{?1,3?,?2,4?,?4,2?}, (a) 求出RS,RS,R?S,R;

(b) 求出D(R),R(R),D(RS),R(RS)。

6. 证明对任意集合A和A上的二元关系R和S,有

D(RS)?D(R)D(S),R(R7. 设A是n个元素的集合,证明 (a) A上有2个一元关系; (b) A上有2个二元关系。

n2nS)?R(R)R(S)。

8. 设P1(x,y)?xy?0,P2(x,y)?|x?y|?4,P3(x,y)?x?y?10,

IP1(x,y)?x整除y,试确定由这些谓词所定义的整数集合上的二元关系是否具有以

下特性,将结果用Y(yes)和N(no)填入下表。

自反的 反自反的 对称的 反对称的 传递的 P1 P2 P3 P4 9. 确定整数集合I上的相等关系、?关系、?关系、全域关系、空关系具有哪些特性?试

将结果用类似于上题的表列出。

10. 设A?{1,2,3,4},A上的下列关系是否可传递?如果不是可传递的,举出反例证明它,

然后找出一个具有最少序偶的关系R,使R包含原关系,并且是可传递的。 (a) R?{?1,1?}; (b) R?{?1,2?,?2,2?};

(c) R?{?1,2?,?2,3?,?1,3?,?2,1?};

第37页 共53页

(d) R?{?1,2?,?4,3?,?2,2?,?2,1?,?3,1?}。

11. (a) 找出一个非空的最小集合,并在其上定义一个既不是自反的,也不是反自反的关系;

(b) 找出一个非空的最小集合,并在其上定义一个既不是对称的,也不是反对称的关系; (c) 若(a),(b)二题中允许用空集合,结果将怎样?

12. 考虑任意集合A上的二元关系的集合,如果某一集合运算施于关系后,所得关系仍具

有相同的性质,那么说一个关系的性质在该运算下是保持的。例如自反性质在二元运算并之下是保持的,因为两个自反关系的并是自反的。然而,自反性质在集合的求补运算下是不保持的,因为非空集合上的一个自反关系的绝对补不是一个自反关系。按照在指定的集合运算下给出的性质是否保持,填充下表。对每一非(N)的回答,给出反例。 自反的 反自反的 对称的 反对称的 传递的 2并R1 R2 交R1 R2 相对补R1?R2 绝对补A?A?R1 13. 在R平面上画出下述关系的图,确定对每一关系成立哪些性质。 (a) {?x,y?|x?y};

(b) {?x,y?|x2?1?0?y?0}; (c) {?x,y?||x|?1?|y|?1}。

3.2 关系的合成

14. 设R1和R2是集合A?{a,b,c,d}上的关系,这里

R1?{?b,b?,?b,c?,?c,a?},R2?{?b,a?,?c,d?,?c,a?,?d,c?},

3求出R1R2,R2R1,R1R2R1,R12,R2。

第38页 共53页

15. 设R1和R2是集合A?{0,1,2,3}上的关系,这里

R1?{?i,j?|j?i?1?j?i/2},R2?{?i,j?|i?j?2},

3求出R1R2,R2R1,R1R2R1,R12,R2。

16. 证明:如果R是集合A上的空关系或全域关系,则R?R。

2R是如图3.3所示的A上的二元关系,17. 设A?{a,b,c,d,e,f,g},试找出最小的整数m和n,使得m?n,且R?R。

18. 设R1和R2是集合A上的任意关系,证明或否定下列断言: (a) 如果R1和R2是自反的,那么R1R2是自反的; (b) 如果R1和R2是反自反的,那么R1R2是反自反的; (c) 如果R1和R2是对称的,那么R1R2是对称的; (d) 如果R1和R2是反对称的,那么R1R2是反对称的; (e) 如果R1和R2是传递的,那么R1R2是反传递的。

19. R1,R2,R3是集合A上的二元关系,试证明如果R1?R2,那么 (a) R1R3?R2R3; (b) R3R1?R3R2。

20. 设A?{1,2,3,4,5},R?{?1,2?,?3,4?,?2,2?},S?{?4,2?,?2,5?,?3,1?},试求出MRS。

mn?0?021. 设A?{1,2,3,4},MR???1??0

001000011??0?,求MRn,n?N。 ?0?0?3.3 关系上的闭包运算

22. 试证明如果关系R是自反的,那么R也是自反的;如果R是可传递的、反自反的、对

第39页 共53页

称的或反对称的,则R亦然。 23. 如果关系R是反对称的,则在关系RR的关系矩阵中有多少个非零记入值。

24. 设A?{a,b,c},R和S是A上的二元关系,其关系矩阵是

?110??110?????MR??010?,MS??010?,

?001??011?????试求出MR,MS,MRS,MRR。

25. 设R是A?{1,2,3,4}上的二元关系,其关系矩阵是

?1?0MR???1??1000011110??1?, ?0?0?试求出(a) Mr(R);(b) Ms(R);(c) MR2,MR3,MR4和Mt(R)。 26. 设R1和R2是集合A上的关系,且R1?R2,证明下列各式 (a) r(R1)?r(R2); (b) s(R1)?s(R2); (c) t(R1)?t(R2)。

27. 设R1和R2是集合A上的关系,证明下列各式 (a) r(R1(b) s(R1(c) t(R1R2)?r(R1)r(R2); R2)?s(R1)s(R2); R2)?t(R1)t(R2);

R2)?t(R1)t(R2)。

2(d) 用反例证明t(R128. 找出n个元素的集合A和A上的二元关系R,使R,R,可能吗?如有可能,试举出例子。

,Rn,Rn?1都是有区别的,这

29. (a) 用反例证明语句“如果R是传递的,那么s(R)也是传递的”为假;

第40页 共53页

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《离散数学》习题集(8)在线全文阅读。

《离散数学》习题集(8).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/571735.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: