?cc20?f?2cmn??2?22?a??0?????b?? ?a?0.7cm??因此可传输TE10模 ②a?0.7cm,b?0.6cm
?ccmn?f?2cmn?22
?m??n??a?????b???c2c10?f?cmn?2?1?2?a??0?????b?? ?2a?1.4cm???c01?f?2ccmn?22?0??1?a??????b?? ?2b?1.2cm???c20?f?2ccmn?22?2??0?a??????b?? ?a?0.7cm???c02?cf?2cmn?22?0??2??a?????b?? ?b?0.6cm?? 因此可传输TE10和TE01模 14.
yb xz
?2E?k2E?0, k????
?2Ex?k2Ex?0
Ex?x,y,z??Y?y?eikzz,代入上式得
d2Ydy2??k2?k2z?Y?0 令:k2?k2222z?ky ,即:ky?kz??2??
Y?C1sinkyy?D1coksyy,因此
Ex?x,y,z???C1sinkyy?D1cosk?zyyeikz
依Ex?x,0,z??0得:D1?0 依Ex?x,b,z??0得:kn?y?b,n?0,1,2,3? 因此:En?x?A1sinbyeikzz 同理:Ey?x,y,z???C2sinkyy?D2coskyy?eikzz依??E?0得,在y?0,b处?Ey?y?0,因此
Cn?2?0,ky?b,n?0,1,2,3? 因此:En?y?A2cosbyeikzz 同理:Ez?x,y,z???C3sinkyy?D3coskyy?eikzz 依Ez?x,0,z??0得:D3?0 依Ez?x,b,z??0得:kn?y?b,n?0,1,2,3? 因此:En?ikzzz?A3sinbye 依??E?0得,?n?bA2?ikzA3?0,A1独立 2 依k2k2?n??y?k2z??2??,得z??2?????b??
要能传导模,kz必须为实数。因此截止(角)
2频率?2?n??c满足:?c?????b???0
?1n?c???b 另:14.
Ex???Hz??? ???0??2?y???2???i??kz??c2??1??Ez? ???kz??2?y???2???i??kz??c2??1Ey?A2sinkxxcoskyysinkzz Ez?A3sinkxxsinkyycoskzz kxA1?kyA2?kzA3?0 依??E?i??H得H?1??E
Ey? H1x???Ez???2????0i??y?? ??c2?k2????z?? H1??Hzy?2???k?z i?????c2?k2?z????y??? ? TM波:Hz?0 依En?z?A3sinbyeikzz可知,若n?0,则Ez?0,波导中无电磁波。因此不存在TM0模 TE波:Ez?0
Hz?x,y,z???C4sinkyy?D4coskyy?eikzz
E????0?C4kycoskyy?D4kysinkyy?xeikzzi????22??c2?kz???依Ex?x,0,z??0得:C4?0 依Ex?x,b,z??0得:ky?n?b,n?0,1,2,3? 因此:Hn?z?x,y,z??D4cosbyeikzz,n取0时有电磁场存在
TM波:TM1、TM2、TM3、 TE波:TE0、TE1、TE2、TE3、
截止(角)频率:?1?c?n??b 15.
Ex?A1coskxxsinkyysinkzz
i??H1?x?i?????Ez?Ey???y??z????1i???A3kysinkxxcoksyycokszz? A2kzsinkxxcoksyycokszz??A3ky?A2kzi??sinkxxcoksyycokszzHy?1?i????Ex??z??Ez??x???1i???A1kzcoskxxsinkyycoskzz? A3kxcoskxxsinkyycoskzz?A1kz?A3kxi??coskxxsinkyycoskzzH1?z?i????E?y??x??Ex??y????1i???A2kxcoskxxcoskyysinkzz?A1kycoskxxcoskyysinkzz??A2kx?A1kyi??coskxxcoskyysinkzzwe?12E?x,y,z,t??D?x,y,z,t?
?12?E?x,y,z,t??E?x,y,z,t?we?14Re???E*?x,y,z??E?x,y,z??? We????wedV?132?LL222 1L23?A1?A2?A3? wm?1H?x,y,z,t??B?x,y,z,t?2
1??H?x,y,z,t??H?x,y,z,t?21Re???H*?x,y,z??H?x,y,z??? 4wm?Wm????wmdV2?L1L2L3??A3ky?A2kz??32????2??A1kz?A3kx???A2kx?A1ky?22?
????L1L2L3222222 A?A?Ak?k?k???123xyz?32????2?L1L2L32222A?A?A?????123232????12?L1L2L3?A12?A2?A32?32 因此:We?Wm
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《电动力学(第二版)》(郭硕鸿)第四章习题(2)在线全文阅读。
相关推荐: