77范文网 - 专业文章范例文档资料分享平台

《电动力学(第二版)》(郭硕鸿)第四章习题

来源:网络收集 时间:2019-04-01 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第四章 习 题

1. ⑴

E??k?dk?z????d??t?1?E0ei E??k?dk?z????d??t?2?E0ei

E?E1?E?E?2i??k?dk?z????d??t?0e?ei??k?dk?z????d??t???E?ei?dk?z?d??t?0?e?i?dk?z?d??t??ei?kz??t?

?E0?2cos?dk?z?d??t?ei?kz??t? ⑵

令kz??t?常数,得

vdzp?dt??k 令dk?z?d??t?常数,得

vg?dzdt?d?dk 2.

sin?sin?''??2?2sin45?1??2,sin?''??1?122 co?s''?1?sin2?''?32 E'??cos???2?2cos?''E?11?1?1cos???2?2cos?''?cos45??2cos?''cos45??2cos?''1?23

?2212?232?1?31?32R???1?3????2?3?1?3? ?2?3E''2?1?1cos?E??1?1cos???2?2cos?''21?21

2?232?21?32T???2?2?1?3???2?3 3.

?0?6.28?10?5cm,n?1.33,??60?

设产生全反射的临界入射角为?0,则

sin?sin90?0?n?11.33,?0?48.8??60? 因此入射角为60?时将产生全反射。 ⑵ kx\?kx?ksin?

v?p??kx\?ksin??csin60??32c ??1??1??0n2?sin2??n2212?sin2??n2215?6.28?10?1.332?3.14sin260???11.33?2

?1.75?10?5cm4. ⑴

??E?i?B (4.1) ??H??i?D (4.2) ??D?0 (4.3) ??B?0 (4.4)

E?x,t??Ei?k?x??t?0e,E?x??Eik?x0e

D?x,t??Di?kx??t?0e,D?x??Dik?x0e

H?x,t??Hi?kx??t?0e,H?x??Hk?x0ei

B?x,t??B?kx??t?0ei,B?x??Bik?x0e (公式:????f???????f????f) 由式(4.3)得:

0???D?x?????Dik?x0e??ieik?xk?D0?ik?D?x?

同样方法,由式(4.4)得:0?ik?B?x? 因此:k?B?k?D?0

若D与E不同向,则一般k?E?0 (公式????f???????f????f)

B?x???i???E?x???i????Eik?x0e???iik?x0??iik?x???e??E?eik?E0

?1?k?E?x?D?x??i???H?x??i????Hik?x0e??i??eik?x??iik?x?H0??eik?H0 ??11?k?H?x?????k?B?x?(公式:a??b?c??b??c?a??c??a?b?) 因此:B?D?B?E?0 ⑵

(公式:?a?b??c??c?a?b??c?b?a)

D?x???1??k?B?x?

??1??k???1???k?E?x??? ?12?2??kE??k?E?k?⑶ S_?1*1?2Re?E?H??2Re??E*???1k?????????E??????1

??*2??Re?E?k?E?E2k?因一般k?E?0,所以S_一般与E不同向5. ⑴

E1?exE0eikz

Ei?kz??2?2?eyE0e

Ex?E0cos?kz??t?

Ey?E0cos?kz??t??2??E0sin?kz??t?

因此:E222x?Ey?E0,为圆偏振光 tan??EyE?tan?kz??t?

x上式两边对时间t求导,得

sec2???d?dt???sec2?kz??t?,因此:d?dt?0为右旋圆偏振光。 ⑵

一个圆偏振光可以分解为偏振方向互相垂

直、振幅相等、相位差?2的二个线偏振光 ???Ex?E0co?skz???t??Ey??E0sin?kz???

t “+”为右旋圆偏振光

“-”为左旋圆偏振光 6.

(公式:????f???????f????f ) (公式:?a?b??c??c?a?b??c?b?a )

E?E?zi?z0e?e,其中E0?ez H?1i????E?1???zi???eei?z??E0

????i?i??e??zei?zez?E0 ⑴

S_?12Re?E*?H??1???z??2Re???e?i?i??e??zE*0??ez?E0??????2??e?2?zE20ez

z?0处,S_?0???22??eE0ez

p1?*?E??1L?ReJRe??E222??1

?E2?z20e?2P?L??1E2?2?z02?0edz?E2

?04?由?2????i???????i??2得:

????2??,??_???2?,因此:S?PL

7.

?r?1,??1S?m?1,?0?8.85?10?12F?m?1?70?4??10?H?m?1

⑴f?50Hz

12???????1?2??2??1??????2?2?1?????? ????2??12??2????2??50?4??10?7?1

?71m ⑵f?106Hz

??12??2????2??106?4??10?7?1

?0.50m ⑶f?109Hz

??1??2????22??109?4??10?7?1

?0.016m8.

z?3k②???①??0?0x1?2k1k' 在真空中:k1???0?0??c,

k1?k1xex?k1zez,k1x?ksin?1,k1z?kcos?1 在导电介质中:k??????i???????',

k?β?iα,α?axex??zez,???xex??zez

在分界面处:k1?x?k?x 得:k1sin?1?i?x??x 因此:?x?0,??x?csin?1

k?β?iα?k1sin?1ex???z?i?z?ez

k2?k2221sin?1???z?i?z???2????i???

?k222 ?1sin2?1??z??z??2??? ?2?zz???? 解上方程得

?2z?1?2??????2??22?c2sin?1????

11?2?

22???????2??????2??2sin2???????c21?????2z??1?2??????2??2c2sin2??1????

1

1?22??????2????????22si2???2???c2n?1??????9.

?2E?k2E?0, k????

?2E2x?kEx?0

Ex?x,y,z??X?x?Y?y?Z?z?,代入上式得

YZd2Xd2Yd2Z2dx2?XZdy2?XYdz2?kXYZ?0

d2Xdx2?k2xX?0 d2Ydy2?k2yY?0 d2Zdz?k22zZ?0 k2k2x?y?k2z??2??

Ex???C1coksxx?D1sinkxx??C2coksyy?D2sinkyy??

?C3cokszz?D3sinkzz?依Ex?x,0,z??0,得C2?0 依Ex?x,b,z??0,得sinkyb?0

kn?y?b,n?0,1,2?

依??E?0得,在x?0,a处?Ex?x?0 得D?1?0,kx?ma,m?0,1,2? 依Ex?x,y,0??0,得C3?0 因此

E?x?A1cosmaxsinn?bysinkzz 同样方法

Em?n?y?A2sinaxcosbysinkzz 另

Ez???C4coskxx?D4sinkxx??C5coskyy?D5sinkyy??

?C6coskzz?D6sinkzz?依Ez?0,y,z??0,得C4?0 依Ez?x,0,z??0,得C5?0 依??E?0得,在z?0处

?Ez?z?0,有D6?0Em?z?A3sinaxsinn?bycoskzz k2??2?????m??2?m??2z?a?????b??

依??E?0得:

m?aAn?1?bA2?kzA3?0 10.

??E?i??0H (10.1.1) ??H??i??0E (10.1.2) 由式(10.1)得(见《电》p.342)

?Ez?y??Ey?z?i??0Hx (10.2.1) ?Ex?z??Ez?x?i??0Hy (10.2.2) ?EyEx?x???y?i??0Hz (10.2.3) ?Hz?y??Hy?z??i??0Ex (10.2.4) ?Hx?z??Hz?x??i??0Ey (10.2.5) ?Hy?Hx?x??y??i??0Ez (10.2.6) 依题意分离变量:E?x,y,z??E?x,y?eikzz,因此有

Ex?x,y,z??Ex?x,y?eikzz Ezy?x,y,z??Ey?x,y?eikz Ez?x,y,z??Ez?x,y?eikzz Hx?x,y,z??Hzx?x,y?eikz Hy?x,y,z??Hy?x,y?eikzz Hz?x,y,z??Hz?x,y?eikzz 以上六式代入式(10.2)得

?Ez?y?ikzEy?i??0Hx (10.3.1)

ikzEx??Ez?i??0Hy (10.3.2) ?x?Eyd2Y2?kyY?0 2dy2222??Ex?i??0Hz (10.3.3) ?x?y?Hz?y?ikzHy??i??0Ex (10.3.4) ikzH?Hx?z?x??i??0Ey (10.3.5) ?Hy?Hx?x??y??i??0Ez (10.3.6) 解(10.3.1)、 (10.3.2) 、(10.3.4)和 (10.3.5)得 E1???????Hz?Ez?x?0i????22????y?kz?x??? ?c2?kz?? E1?y?2?????Hz?Ez?0? i?????c2?k2??x?kz?y??z???? H?1???k?Hz?Ezx??z?i????22????x???0?y?? ?c2?kz?? H1?y?2???k?Hz?Ez?z???0?? i????2????y?x??c2?kz??y bazx

TM波,即Hz?0,磁场无纵向分量

?2E?k2E?0, k????

?2Ez?k2Ez?0

Ez?x,y,z??X?x?Y?y?eikzz,代入上式得

d2Xdx2?k2xX?0 kx?ky?kz????

Ez??C3coskxx?D3sink?xx??Ccoskeik

yy?D4sinkyy??zz4依Ez?0,y,z??0,得:C3?0 依Ez?x,0,z??0,得:C4?0

依Em?z?a,y,z??0,得:kx?a,m?0,1,2?依Ex,b,z??0,得:kn?z?y?b,n?0,1,2?

因此:Em?z?E0sinaxsinn?ikzzbye 13.

f?30?109Hz

①a?0.7cm,b?0.4cm

??cf?3?108 30?109?0.01m?1cm 22???m?cmn?????a?????n??b?? 1?22fcmn?2???m??a?????n??b??22

?c?m??n?2??a?????b???ccmn?f?2cmn?m22

???a??n?????b???cc10?f?2cmn?2?1??a?????0?2?b?? ?2a?1.4cm???c01?cf?2cmn??0?22?a??1?????b?? ?2b?0.8cm?? 12.

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《电动力学(第二版)》(郭硕鸿)第四章习题在线全文阅读。

《电动力学(第二版)》(郭硕鸿)第四章习题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/561713.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: