77范文网 - 专业文章范例文档资料分享平台

液压与气压传动试题库(4)

来源:网络收集 时间:2019-03-22 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

那一减压阀决定。因此,为了获得两种不同夹紧力,必须使pj1

15. 在如图所示系统中,两液压缸的活塞面积相同,A=20cm2,缸I的阻力负载FⅠ=8000N,缸II的阻力负载FⅡ=4000N,溢流阀的调整压力为py =45×105Pa。1)在减压阀不同调定压力时(pj1 =10×105Pa 、pj2 =20×105Pa、pj3 =40×105Pa)两缸的动作顺序是怎样的?2)在上面三个不同的减压阀调整值中,哪个调整值会使缸II运动速度最快?

ICF1II4BAF23

解:1)启动缸II所需的压力:p2?F?4000??20?105Pa A20pj1 =10×105Pa < p2 ,减压阀处于工作状态,由于出口压力不能推动阻力F2,故缸II不动,v2=0、pA=10×105Pa,pB =py =45×105Pa,压力油使缸Ⅰ右移。

pj2 =20×105Pa = p2 ,减压阀处于工作状态,流量根据减压阀口、节流阀口及溢流阀口的液阻分配,两缸同时动作。

pj3 =40×105Pa > p2 ,减压阀口全开、不起减压作用,若不计压力损失,pB ≈ p2 =20×105Pa,该压力不能克服缸I负载,故缸II单独右移,待缸II运动到端点后,压力上升pA =pj =40×105Pa, pB =py =45×105Pa,压力油才使缸I向右运动。

2)当pj3 =40×105Pa 时,减压阀口全开、不起减压作用。泵的压力取决于负载,pB = p2 =20×105Pa 。因为溢流阀关闭,泵的流量全部进入缸II,故缸II运动速度最快,vII=q/A 。

16. 如图所示采用蓄能器的压力机系统的两种方案,其区别在于蓄能器和压力继电器的安装位置不同。试分析它们的工作原理,并指出图(a)和(b)的系统分别具有哪些功能?

解:图(a)方案,当活塞在接触工件慢进和保压时,或者活塞上行到终点时,泵一部分油液进入蓄能器。当蓄能器压力达到一定值,压力继电器发讯使泵卸载,这时,蓄能器的压力油对压力机保压并补充泄漏。当换向阀切换时,泵和蓄能器同时向缸供油,使活塞快速运动。蓄能器在活塞向下向上运动中,始终处于压力状态。由于蓄能器布置在泵和换向阀之间,换向时兼有防止液压冲击的功能。

16

图(b)方案,活塞上行时蓄能器与油箱相通,故蓄能器内的压力为零。当活塞下行接触工件时泵的压力上升,泵的油液进入蓄能器。当蓄能器的压力上升到调定压力时,压力继电器发讯使泵卸载,这时缸由蓄能器保压。该方案适用于加压和保压时间较长的场合。与(a)方案相比,它没有泵和蓄能器同时供油、满足活塞快速运动的要求及当换向阀突然切换时、蓄能器吸收液压冲击的功能。

17. 在图示的系统中,两溢流阀的调定压力分别为60×105Pa、20×105Pa。1)当py1=60×105Pa,py2=20×105Pa ,DT吸合和断电时泵最大工作压力分别为多少?2)当py1=20×105Pa,py2=60×105Pa,DT吸合和断电时泵最大工作压力分别为多少?

解:1)DT失电时活塞向右运动,远程调压阀1进出口压力相等,由于作用在阀芯两端的压差为零,阀1始终处于关闭状态不起作用,泵的压力由py2决定:ppmax=py2=20×105Pa;DT吸合时活塞向左运动,缸的大腔压力为零,泵的最大工作压力将由py1、py2中较小的值决定:ppmax=py2=20×105Pa。

2)同上一样,DT失电时活塞向右运动,远程调压阀1不起作用,泵的压力由py2决定:ppmax=py2=60×105Pa;DT吸合时活塞向左运动,泵的最大工作压力将由py1、py2中较小的值决定:ppmax=py1=20×105Pa。 18. 下列供气系统有何错误?应怎样正确布置?

解:气动三大件是气动系统使用压缩空气质量的最后保证,其顺序分水滤气器、减压阀、油雾器。图a)用于气阀和气缸的系统,三大件的顺序有错,油雾器应放在减压阀、压力表之后;图b)用于逻辑元件系统,不应设置油雾器,因润滑油会影响逻辑元件正常工作,另外减压阀图形符号缺少控制油路。

19. 有人设计一双手控制气缸往复运动回路如图所示。问此回路能否工作?为什么?如不能工作需要更换哪个阀?

17

解:此回路不能工作,因为二位二通阀不能反向排气,即二位四通换向阀左侧加压后,无论二位二通阀是否复位,其左侧控制压力都不能泄压,这样弹簧就不能将它换至右位,气缸也就不能缩回; 将两个二位二通阀换为二位三通阀,在松开其按钮时使二位四通换向阀左侧处于排气状态,回路即可实现往复运动。 六、问答题

1. 是门元件与非门元件结构相似,是门元件中阀芯底部有一弹簧,非门元件中却没有,说明是门元件中弹簧的作用,去掉该弹簧是门元件能否正常工作,为什么?

答:当“是门”元件正常工作时,气流由气源流向输出口S,若由于某种原因使气源压力p为零而输出仍保持压力,则输出口S气流会回流到气源口,输出口S的污秽会进入是门元件甚至是门元件前的其它控制阀。这种情况应该避免。故采用弹簧使是门元件阀芯复位,防止输出口S气流回流。此中情况下非门元件输出口S回流气流正好使阀芯关断,故不需弹簧。

2. 简述压缩空气净化设备及其主要作用。

答:压缩空气净化设备一般包括后冷却器、油水分离器、贮气罐、干燥器。后冷却器安装在空气压缩机出口管道上,它将压缩空气中油雾和水汽达到饱和使其大部分凝结成滴而析出。油水分离器安装在后冷却器后的管道上,作用是分离压缩空气中所含的水分、油分等杂质,使压缩空气得到初步净化。贮气罐的主要作用是贮存一定数量的压缩空气,减少气源输出气流脉动,增加气流连续性,进一步分离压缩空气中的水分和油分。干燥器的作用是进一步除去压缩空气中含有的水分、油分、颗粒杂质等,使压缩空气干燥。 3. 试比较截止式气动逻辑元件和膜片式气动逻辑元件的特点。

答:(1)在工作原理上:高压截止式逻辑元件的动作是依靠气压信号推动阀芯或通过膜片变形推动阀芯动作,改变气流的通路以实现一定的逻辑功能;高压膜片式逻辑元件由带阀口的气室和能够摆动的膜片构成,它通过膜片两侧造成压力差使膜片向一侧摆动,从而开关相应的阀口,使气流的流向、流路切换,以实现各种逻辑控制功能。

(2)在性能上各有长处:高压截止式逻辑元件的阀芯是自由圆片或圆柱体,检查、维修、安装方便,行程短,流量大。高压膜片式逻辑元件结构简单,内部可动部件摩擦小,寿命长,密封性好。 4. 简述冲击气缸的工作过程及工作原理。

答:它的工作过程可简单地分为三个阶段。第一段,气源由孔A供气,孔B排气,活塞上升并用密封垫封住喷嘴,气缸上腔成为密封的储气腔。第二段,气源改由孔A排气,孔B进气。由于上腔气压作用在喷嘴上面积较小,而下腔作用面积较大,可使上腔贮存很高的能量。第三段,上腔压力增大,下腔压力继续降低,上下腔压力比大于活塞与喷嘴面积比时,活塞离开喷嘴,上腔的气体迅速充入到活塞与中盖间的空间。活塞将以极大的加速度向下运动,气体的压力能转换为活塞的动能,利用这个能量对工件冲击做工,产生很大的冲击力。 5. 使用气动马达和气缸时应注意那些事项?

答:气动马达在使用中必须得到良好的润滑。一般在整个气动系统回路中,在气动马达控制阀前设置油雾器,并按期补油,使油雾混入空气后进入气动马达,从而达到充分润滑。

气缸在使用时应注意环境温度为-35~+80℃;安装前应在1.5倍工作压力下进行试验,不应漏气;装配时所有工作表面应涂以润滑脂;安装的气源进口处必须设置油雾器,并在灰大的场合安装防尘罩;安装时应尽可能让活塞杆承受轴线上的拉力载荷;在行程中若载荷有变化,应该使用输出力充裕的气缸,并附设缓冲装置;多数情况下不使用满行程。

6. 简述气压传动系统对其工作介质—压缩空气的主要要求。

答:气动系统要求压缩空气具有一定的压力和足够的流量,具有一定的净化程度,所含杂质(油、水及灰尘等)粒径一般不超过以下数值:气缸、膜片式和截止式气动元件—不大于50μm,气动马达、硬配滑阀—不大于25μm,射流元件—10μm左右。

7. 液压传动中常用的液压泵分为哪些类型?

答:1) 按液压泵输出的流量能否调节分类有定量泵和变量泵。定量泵:液压泵输出流量不能调节,即单位时间内输出的油液体积是一定的。 变量泵:液压泵输出流量可以调节,即根据系统的需要,泵输出不同的流量。

2)按液压泵的结构型式不同分类有齿轮泵(外啮合式、内啮合式)、 叶片泵(单作用式、双作用式)、柱塞泵(轴向式、径向式)螺杆泵。

18

8. 如果与液压泵吸油口相通的油箱是完全封闭的,不与大气相通,液压泵能否正常工作?

答:液压泵是依靠密闭工作容积的变化,将机械能转化成压力能的泵,常称为容积式泵。液压泵在机构的作用下,密闭工作容积增大时,形成局部真空,具备了吸油条件;又由于油箱与大气相通,在大气压力作用下油箱里的油液被压入其内,这样才能完成液压泵的吸油过程。如果将油箱完全封闭,不与大气相通,于是就失去利用大气压力将油箱的油液强行压入泵内的条件,从而无法完成吸油过程,液压泵便不能工作了。 9. 什么叫液压泵的工作压力,最高压力和额定压力?三者有何关系?

答:液压泵的工作压力是指液压泵在实际工作时输出油液的压力,即油液克服阻力而建立起来的压力。液压泵的工作压力与外负载有关,若外负载增加,液压泵的工作压力也随之升高。

液压泵的最高工作压力是指液压泵的工作压力随外载的增加而增加,当工作压力增加到液压泵本身零件的强度允许值和允许的最大泄漏量时,液压泵的工作压力就不再增加了,这时液压泵的工作压力为最高工作压力。

液压泵的额定压力是指液压泵在工作中允许达到的最高工作压力,即在液压泵铭牌或产品样本上标出的压力。 考虑液压泵在工作中应有一定的压力储备,并有一定的使用寿命和容积效率,通常它的工作压力应低于额定压力。在液压系统中,定量泵的工作压力由溢流阀调定,并加以稳定;变量泵的工作压力可通过泵本身的调节装置来调整。应当指出,千万不要误解液压泵的输出压力就是额定压力,而是工作压力。 10. 什么叫液压泵的排量,流量,理论流量,实际流量和额定流量?他们之间有什么关系?

答:液压泵的排量是指泵轴转一转所排出油液的体积,常用V表示,单位为ml/r。液压泵的排量取决于液压泵密封腔的几何尺寸,不同的泵,因参数不同,所以排量也不一样。

液压泵的流量是指液压泵在单位时间内输出油液的体积,又分理论流量和实际流量。

理论流量是指不考虑液压泵泄漏损失情况下,液压泵在单位时间内输出油液的体积,常用qt表示,单位为l/min(升/分)。排量和理论流量之间的关系是:qt?nV1000(lmin)

式中 n——液压泵的转速(r/min);q——液压泵的排量(ml/r)

实际流量q是指考虑液压泵泄漏损失时,液压泵在单位时间内实际输出的油液体积。由于液压泵在工作中存在泄漏损失,所以液压泵的实际输出流量小于理论流量。

额定流量qs是指泵在额定转速和额定压力下工作时,实际输出的流量。泵的产品样本或铭牌上标出的流量为泵的额定流量。

11. 什么叫液压泵的流量脉动?对工作部件有何影响?哪种液压泵流量脉动最小?

答:液压泵在排油过程中,瞬时流量是不均匀的,随时间而变化。但是,在液压泵连续转动时,每转中各瞬时的流量却按同一规律重复变化,这种现象称为液压泵的流量脉动。液压泵的流量脉动会引起压力脉动,从而使管道,阀等元件产生振动和噪声。而且,由于流量脉动致使泵的输出流量不稳定,影响工作部件的运动平稳性,尤其是对精密的液压传动系统更为不利。通常,螺杆泵的流量脉动最小,双作用叶片泵次之,齿轮泵和柱塞泵的流量脉动最大。 12. 齿轮泵的径向力不平衡是怎样产生的?会带来什么后果?消除径向力不平衡的措施有哪些?

答:齿轮泵产生径向力不平衡的原因有三个方面:一是液体压力产生的径向力。这是由于齿轮泵工作时,压油腔的压力高于吸油腔的压力,并且齿顶圆与泵体内表面存在径向间隙,油液会通过间隙泄漏,因此从压油腔起沿齿轮外缘至吸油腔的每一个齿间内的油压是不同的,压力逐渐递减。二是齿轮传递力矩时产生的径向力。这一点可以从被动轴承早期磨损得到证明,径向力的方向通过齿轮的啮合线,使主动齿轮所受合力减小,使被动齿轮所受合力增加。三是困油现象产生的径向力,致使齿轮泵径向力不平衡现象加剧。

齿轮泵由于径向力不平衡,把齿轮压向一侧,使齿轮轴受到弯曲作用,影响轴承寿命,同时还会使吸油腔的齿轮径向间隙变小,从而使齿轮与泵体内产生摩擦或卡死,影响泵的正常工作。

消除径向力不平衡的措施: 1) 缩小压油口的直径,使高压仅作用在一个齿到两个齿的范围,这样压力油作用在齿轮上的面积缩小了,因此径向力也相应减小。有些齿轮泵,采用开压力平衡槽的办法来解决径向力不平衡的问题。如此有关零件(通常在轴承座圈)上开出四个接通齿间压力平衡槽,并使其中两个与压油腔相通,另两个与吸油腔相通。这种办法可使作用在齿轮上的径向力大体上获得平衡,但会使泵的高低压区更加接近,增加泄漏和降低容积效率。

19

13. 为什么称单作用叶片泵为非卸荷式叶片泵,称双作用叶片泵为卸荷式叶片泵?

答: 由于单作用式叶片泵的吸油腔和排油腔各占一侧,转子受到压油腔油液的作用力,致使转子所受的径向力不平衡,使得轴承受到的较大载荷作用,这种结构类型的液压泵被称作非卸荷式叶片泵。因为单作用式叶片泵存在径向力不平衡问题,压油腔压力不能过高,所以一般不宜用在高压系统中。双作用叶片泵有两个吸油腔和两个压油腔,并且对称于转轴分布,压力油作用于轴承上的径向力是平衡的,故又称为卸荷式叶片泵。 14. 双作用叶片泵如果要反转,而保持其泵体上原来的进出油口位置不变,应怎样安装才行?

答:要使一个向前倾斜的双作用叶片泵反转,而反转时仍保持叶片前倾状态,须将泵拆开后,把转子及其上的叶片,定子和配流盘一块翻转180°(即翻转过去),这样便可保持其转子叶片仍处于前倾状态。但也由于是反转了,吸油口便成了压油口,而压油口又变成了吸油口。为了保持其泵体上原有的进出油口不变,在翻转180°的基础上,再将它们绕转子的轴线转90°,然后再用定位销将定子,配流盘在泵体上相对应的孔中穿起来,将泵装好即可。 15. 限压式变量叶片泵适用于什么场合?有何优缺点? 答:限压式变量叶片泵的流量压力特性曲线如图所示。

在泵的供油压力小于p限时,流量按AB段变化,泵只是有泄漏损失,当泵的供油压力大于p限时,泵的定子相对于转子的偏心距e减小,流量随压力的增加而急剧下降,按BC曲线变化。由于限压式变量泵有上述压力流量特性,所以多应用于组合机床的进给系统,以实现快进→工进→快退等运动;限压式变量叶片泵也适用于定位、夹紧系统。当快进和快退,需要较大的流量和较低的压力时,泵在AB段工作;当工作进给,需要较小的流量和较高的压力时,则泵在BC段工作。在定位﹑夹紧系统中,当定位、夹紧部件的移动需要低压、大流量时,泵在AB段工作;夹紧结束后,仅需要维持较高的压力和较小的流量(补充泄漏量),则利用C点的特性。总之,限压式变量叶片泵的输出流量可根据系统的压力变化(即外负载的大小),自动地调节流量,也就是压力高时,输出流量小;压力低时,输出流量大。

优缺点:1)限压式变量叶片泵根据负载大小,自动调节输出流量,因此功率损耗较小,可以减少油液发热。2)液压系统中采用变量泵,可节省液压元件的数量,从而简化了油路系统。3)泵本身的结构复杂,泄漏量大,流量脉动较严重,致使执行元件的运动不够平稳。4)存在径向力不平衡问题,影响轴承的寿命,噪音也大。 16. 什么是双联泵?什么是双级泵?

答:双联泵:同一根传动轴带动两个泵的转子旋转,泵的吸油口是公共的,压油口各自分开。泵输出的两股流量可单独使用,也可并联使用。

双级泵:同一根传动轴带动两个泵的转子旋转,第一级泵输出的具有一定压力的油液进入第二级泵,第二级泵将油液进一步升压输出。因此双级泵具有单泵两倍的压力。

17. 什么是困油现象?外啮合齿轮泵、双作用叶片泵和轴向柱塞泵存在困油现象吗?它们是如何消除困油现象的影响的?

答:液压泵的密闭工作容积在吸满油之后向压油腔转移的过程中,形成了一个闭死容积。如果这个闭死容积的大小发生变化,在闭死容积由大变小时,其中的油液受到挤压,压力急剧升高,使轴承受到周期性的压力冲击,而且导致油液发热;在闭死容积由小变大时,又因无油液补充产生真空,引起气蚀和噪声。这种因闭死容积大小发生变化导致压力冲击和气蚀的现象称为困油现象。困油现象将严重影响泵的使用寿命。原则上液压泵都会产生困油现象。 外啮合齿轮泵在啮合过程中,为了使齿轮运转平稳且连续不断吸、压油,齿轮的重合度ε必须大于1,即在前一对轮齿脱开啮合之前,后一对轮齿已进入啮合。在两对轮齿同时啮合时,它们之间就形成了闭死容积。此闭死容积随着齿轮的旋转,先由大变小,后由小变大。因此齿轮泵存在困油现象。为消除困油现象,常在泵的前后盖板或

20

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库液压与气压传动试题库(4)在线全文阅读。

液压与气压传动试题库(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/536201.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: