12.(2010 山东省 ) (已知二次函数y?ax?bx?c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形; ②设PQ与对称轴的交点为M,过M点作 x轴的平行线交AB于点N,设四边形ANPQ 的面积为S,求面积S关于时间t的函数解析式, 并指出t的取值范围;当t为何值时, S有最大值或最小值.
第12题图 C O M P B Q A N 2y x
13.(2010 山东 )如图,在平面直角坐标系中,已知抛物线y?ax?bx?c交x轴于
2A(2,0),B(6,0)两点,交y轴于点C(0,23).
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线y?2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
y E D C F O A B x
14.(2010 广东 )如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y?ax?bx?c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM
2(第24题图)
15.(2010福建 )如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______; ⑵若△EFG与梯形ABCD重叠部分面积是y,求 ①当0<x≤2时,y与x之间的函数关系式; ②当2<x≤6时,y与x之间的函数关系式;
⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.
2
16.(2010江西)如图,已知经过原点的抛物线y=-2x+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交与C、D两点,与原抛物线交与点P. (1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理)
(2)在x轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由; (3)△CDP的面积为S,求S关于m的关系式。
y P B E→ F→ C A D G O C A D x
17.(2010 武汉 )如图1,抛物线y1?ax?2ax?b经过点A(-1,0),C(0,
23)两2点,且与x轴的另一交点为点B. (1)求抛物线解析式;
(2)若抛物线的顶点为点M,点P为线段AB上一动点(不与B重合),Q在线段MB上移动,且∠MPQ=45°,设OP=x,MQ=
2y2,求y2于x的函数关系式,并且直接写出2自变量的取值范围;
(3)如图2,在同一平面直角坐标系中,若两条直线x=m,x=n分别与抛物线交于E、G两点,与(2)中的函数图像交于F、H两点,问四边形EFHG能否为平行四边形?若能,求出m、n之间的数量关系;若不能,请说明理由. 图 2
图 1
18.(2010四川 )如图12已知△ABC中,∠ACB=90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 ) (1)试求点C 的坐标
(2)若抛物线y?ax?bx?c过△ABC的三个顶点,求抛物线的解析式.
(3)点D( 1,m )在抛物线上,过点A 的直线y=-x-1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE 相似?若存在,求出P点坐标;若不存在,说明理由。
2
D
H
G
19.(2010浙江 )如图,已知在直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的
正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D,将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴于E和F. (1)求经过A,B,C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时 S最小,并求出这个最小值.
.
20.(2010江苏 )如图,已知二次函数y?ax?bx?3的图像与x轴相交于点A、C,与y轴相较于点B,A(?29,且△AOB∽△BOC。 ,0)42(1)求C点坐标、∠ABC的度数及二次函数y?ax?bx?3的关系是;
(2)在线段AC上是否存在点M(m,0)。使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库二次函数难题压轴题中考精选- 副本 - 图文(2)在线全文阅读。
相关推荐: