28. (14分) 如图,抛物线y=mx―2mx―3m(m>0)与x轴交于A、B两点, 与y轴交于C点. (1)请求抛物线顶点M的坐标(用含m的代数式表示),A,B
y 两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
C M A O B x 2
2017-2018学年度第一学期期末试卷九年级数学答案
一.C D B A B B D C
二.9. 2 10.外切 11.3200(1-x)2=2500 12. x?3或x?4 13.k<1 14.15? 15.-2 16. 2 17.9 18. 3或6或9
三.19.(1)原式=32-42+2 ····················································································· 3分
=0 ································································································· 4分
(2) 原式=9?2?21·································································· 3分 ?1??22?1·
22 =9 ········································································································ 4分 20.(1)x=2或x=5 ······························································································· 4分 12,(x?1)2?2,x?1??2 ·(2) 解:x2-2x+=························································· 2分
∴x1?1?2;x2?1?2 ·················································································· 4分 21. 解:(1) x甲=
____1(82+81+79+78+95+88+93+84)=85, ············································· 1分 81···························································· 2分 x乙=(92+95+80+75+83+80+90+85)=85. ·
8 这两组数据的平均数都是85.
这两组数据的中位数分别为83,84. ·········································································· 4分 (2) 派甲参赛比较合适.理由如下:由(1)知x甲=x乙,
____12s甲?[(78?85)2?(79?85)2?(81?85)2?(82?85)2?(84?85)2 ······························ 5分 8?(88?85)2?(93?85)2?(95?85)2]?35.512s乙?[(75?85)2?(80?85)2?(80?85)2?(83?85)2?(85?85)2 ······························ 6分 8?(90?85)2?(92?85)2?(95?85)2]?41∵x甲=x乙,s甲2?s乙2,
∴甲的成绩较稳定,派甲参赛比较合适. ···································································· 8分 22. 解:(1)因为点A(1,1)在二次函数y?x?2ax?b图像上,所以1=1-2a+b 可得b=2a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 (2)由题意,方程x2-ax+b=0有两个相等的实数根, 所以4a2-4b=4a2-8a=0
解得a=0或a=2 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分
2
当a=0时,y=x, 这个二次函数的图像的顶点坐标为(0,0); ┄┄┄┄┄┄┄┄┄┄6分
22
当a=2时,y=x-4x+4=(x-2), 这个二次函数的图像的顶点坐标为(2,0); 所以, 这个二次函数的图像的顶点坐标为(0,0) ,(2,0). ┄┄┄┄┄┄8分 23.
G
H
2____F
解:(1)如图,扇形BFG和扇形CGH为羊活动的区域.………………………2分 (2)S扇形BFG120?62??12?m2……………………………………………4分
360S扇形CGH60?222???m2………………………………………………6分
3603238???m2…………………………………8分 33∴羊活动区域的面积为:12??24. 已知:①③,①④,②④,③④均可,其余均不可以. ………………………………4分 已知:在四边形ABCD中,①AD∥BC,③?A??C. 求证:四边形ABCD是平行四边形. 证明:∵ AD∥BC
∴?A??B?180?,?C??D?180? ∵?A??C,∴?B??D
∴四边形ABCD是平行四边形. ……………………………………………10分
25. 解:设AB、CD的延长线相交于点E ∵∠CBE=45o CE⊥AE ∴CE=BE…………(2分) ∵CE=26.65-1.65=25 ∴BE=25
∴AE=AB+BE=30 ………………………………(4分) 在Rt△ADE中,∵∠DAE=30o 3∴DE=AE×tan30 o =30× =103 ……………(7分)
3
∴CD=CE-DE=25-103 ≈25-10×1.732=7.68≈7.7(m) ……………(9分)
答:广告屏幕上端与下端之间的距离约为7.7m ……………………(10分) (注:不作答不扣分)
(1) 26. 证明:连接OD
∵DE为⊙O的切线, ∴OD⊥DE┄┄┄┄┄┄┄┄2分 ∵O为AB中点, D为BC的中点
∴OD‖AC ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 ∴DE⊥AC ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 (2)过O作OF⊥BD,则BF=FD ┄┄┄┄┄┄┄┄┄5分 在Rt△BFO中, ∠ABC=30°
∴OF=OB, BF=
123OB ┄┄┄┄┄┄┄┄┄7分 2∵BD=DC, BF=FD,
∴FC=3BF=33OB ┄┄┄┄┄┄┄┄┄8分 2在Rt△OFC中,
1OBOF32??tan∠BCO=. ┄┄┄┄┄┄┄┄┄10分 FC339OB227. 解:(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=135°,
∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°·················································· 2分
??AEM??MCN,??AE?MC,??EAM=?CMN,在△AEM和△MCN中:∵?
∴△AEM≌△MCN,··································································································· 4分 ∴AM=MN ················································································································ 5分 (2)仍然成立. ···································································································· 6分 在边AB上截取AE=MC,连接ME ·················································································· 7分 ∵△ABC是等边三角形, ∴AB=BC,∠B=∠ACB=60°, ∴∠ACP=120°. ∵AE=MC,∴BE=BM ∴∠BEM=∠EMB=60°
∴∠AEM=120°. ···································································································· 8分 ∵CN平分∠ACP,∴∠PCN=60°, ∴∠AEM=∠MCN=120°
∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM
∴△AEM≌△MCN,··································································································· 9分 ∴AM=MN ··············································································································· 10分
(n?2)180?(3)
n ··································································································· 12分
28. 解:(1)∵y=mx2―2mx―3m=m(x2―2x―3)=m(x-1)2―4m,
∴抛物线顶点M的坐标为(1,―4m) ······································································· 2分 ∵抛物线y=mx2―2mx―3m(m>0)与x轴交于A、B两点, ∴当y=0时,mx2―2mx―3m=0,
∵m>0,
∴x2―2x―3=0, 解得x1=-1,x,2=3,
∴A,B两点的坐标为(-1,0)、(3,0). ································································· 4分 (2)当x=0时,y=―3m, ∴点C的坐标为(0,-3m),
1∴S△ABC=×|3-(-1)|×|-3m|=6|m|=6m, ····························································· 5分
2过点M作MD⊥x轴于D,
则OD=1,BD=OB-OD=2,MD=|-4m |=4m.
∴S△BCM=S△BDM +S梯形OCMD-S△OBC 111
=BD·DM+(OC+DM)·OD-OB·OC 222
111
=×2×4m+(3m+4m)×1-×3×3m=3m, ······················································ 7分 222∴ S△BCM:S△ABC=1∶2. ···················································································· 8分 (3)存在使△BCM为直角三角形的抛物线.
过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m, ∴MN=DM-DN=m, ∴CM2=CN2+MN2=1+m2,
在Rt△OBC中,BC2=OB2+OC2=9+9m2, 在Rt△BDM中,BM2=BD2+DM2=4+16m2.
①如果△BCM是Rt△,且∠BMC=90°时,CM2+BM2=BC2, 即1+m2+4+16m2=9+9m2, 解得 m=±
2
, 22. 2
2232x-2x-使得△BCM是Rt△; ··········································· 10分 22
C N M A O D B x y ∵m>0,∴m=
∴存在抛物线y=
②①如果△BCM是Rt△,且∠BCM=90°时,BC2+CM2=BM2. 即9+9m2+1+m2=4+16m2,
解得 m=±1, ∵m>0,∴m=1.
∴存在抛物线y=x2-2x-3使得△BCM是Rt△; ··················································· 12分 ③如果△BCM是Rt△,且∠CBM=90°时,BC2+BM2=CM2. 即9+9m2+4+16m2=1+m2, 1
整理得 m2=-,此方程无解,
2
∴以∠CBM为直角的直角三角形不存在.
(或∵9+9m2>1+m2,4+16m2>1+m2,∴以∠CBM为直角的直角三角形不存在.) 综上的所述,存在抛物线y=
2232x-2x-和y=x2-2x-3使得△BCM是Rt△. ··········· 14分 22
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2017-2018学年靖江市九年级上数学期末试卷及答案(2)在线全文阅读。
相关推荐: