77范文网 - 专业文章范例文档资料分享平台

电磁场与电磁波课后习题及答案--第四章习题解答(2)

来源:网络收集 时间:2019-01-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

An?Bn?2qln??0?a0?(y?d)sin(2qln?yn?d)dy?sin()an??0a (4) n?d)a

由式(3)和(4)解得

An?Bn?

qln??0sin(?1(x,y)?故

1n?d?n?xan?ysin()esin()???0n?1naa (x?0) ql??q?l2(x,y)?1???nsin(n?dn?xan?ya)esin(a)0n?1 (x?0) 4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷

ql。求槽内的电位函数。

解 由于在

(x0,y0)处有一与z轴平行的线电荷ql,以

x?x0为界将

场空间分割为

0?x?x0和x0?x?a两个区域,则这两个区(x0,y0)域中的电位?1(x,y)和?2(x,y)都满足拉普拉斯方程。而在x?x0的

分界面上,可利用?函数将线电荷ql表示成电荷面密度

?(y)?ql?(y?y0),电位的边界条件为

① ?1(0,y=),0?2(a,y)?0

② ?1(x,0)=?1(x,b)?0 ?2(x,0)=?2(x,b)?0

?1(x0,y)??2(x0,y )(??2?x???1?x)x?x0??ql??(y?y0)0

由条件①和②,可设电位函数的通解为

??1(x,y)??Ansin(n?yn?xn?1b)sinh(b) (0?x?x0)

y b ql o a x题4.7图

B?(x,y)??2n?1?nsin(n?yn?)sinh[(a?x)](x?x?a) bb 0由条件③,有

?n?x0n?yn?yn?Asin()sinh()?Bsin()sinh[(a?x0)]??nnbbbbn?1n?1 (1) ???Ann?1n?x0n?n?ysin()cosh()?bbb

qln?n?yn???(y?y0)Bnsin()cosh[(a?x0)]??0bbbn?1 (2)

?由式(1),可得

Ansinh(n?x0n?)?Bnsinh[(a?x0)]?0bb (3)

sin(将式(2)两边同乘以

m?y)b,并从0到b对y积分,有

2qln?x0n??Ancosh()?Bncosh[(a?x0)]n??0bb2qln?y0sin()n??0b (4)

由式(3)和(4)解得

?b0?(y?y0)sin(n?y)dy?b

An?

2qln?y01n?sinh[(a?x0)]sin()sinh(n?ab)n??0bb

Bn?2qln?x0n?y01sinh()sin()sinh(n?ab)n??0bb

?1(x,y)?故

1n?sinh[(a?x0)]???0n?1nsinh(n?ab)b 2ql??sin(n?y0n?xn?y)sinh()sin()bbb (0?x?x0)

?2(x,y)?n?x01sinh()???0n?1nsinh(n?ab)b 2ql??sin(若以

n?y0n?n?y)sinh[(a?x)]sin()bbb (x0?x?a)

y?y0为界将场空间分割为0?y?y0和y0?y?b两个区域,则可类似地得到

?1(x,y)??sin(1n?sinh[(b?y0)]???0n?1nsinh(n?ba)a 2ql?n?x0n?yn?x)sinh()sin()aaa (0?y?y0)

?2(x,y)??sin(n?y01sinh()???0n?1nsinh(n?ba)a 2ql?n?x0n?n?x)sinh[(b?y)]sin()aaa (y0?y?b)

4.8 如题4.8图所示,在均匀电场

E0?exE0中垂直于电场方向放置一根无限长导体圆柱,圆柱

的半径为a。求导体圆柱外的电位?和电场E以及导体表面的感应电荷密度?。 解 在外电场电荷的电位

E0作用下,导体表面产生感应电荷,圆柱外的电位是外电场E0的电位?0与感应

?in的叠加。由于导体圆柱为无限长,所以电位与变量z无关。在圆柱面坐标系中,

外电场的电位为荷的电位

?0(r,?)??E0x?C??E0rcos??C(常数C的值由参考点确定)

,而感应电

?in(r,?)应与?0(r,?)一样按cos?变化,而且在无限远处为0。由于导体是等位体,

所以?(r,?)满足的边界条件为

y ?)?C ① ?(a,②

?(r,?)??Es?C0rco?r(??)

E0

a o x

?1?(r,?)??Ercos??Arcos??C 01由此可设

?1?Eacos??Aacos??C?C 01由条件①,有

题4.8图

2A?aE0 1于是得到

故圆柱外的电位为

?(r,?)?(?r?a2r?1)E0cos??C

若选择导体圆柱表面为电位参考点,即?(a,?)?0,则C?0。 导体圆柱外的电场则为

22??1??aaE????(r,?)??er?e???er(1?)E0cos??e?(?1?)E0sin??rr??r2r2

导体圆柱表面的电荷面密度为

????0??(r,?)E0co?sr?a?2?0?r

4.9 在介电常数为?的无限大的介质中,沿z轴方向开一个半径为a的圆柱形空腔。沿x轴方向外加一均匀电场解 在电场电场

E0?exE0,求空腔内和空腔外的电位函数。

E0的作用下,介质产生极化,空腔表面形成极化电荷,空腔内、外的电场E为外加

E0与极化电荷的电场Ep的叠加。外电场的电位为?0(r,?)??E0x??E0rcos?而感应电

荷的电位

?in(r,?)应与?0(r,?)一样按cos?变化,则空腔内、外的电位分别为?1(r,?)和

?2(r,?)的边界条件为

r??时,?2(r,?)??E0rcos?;

?(r,?)为有限值;

② r?0时,1r?a时, ?1(a,?)??2(a,?),

?0??1????2?r?r

由条件①和②,可设

?1(r,?)??E0rcos??Ar1cos? (r?a) ?2(r,?)??E0rcos??A2r?1cos? (r?a)

?1?2Aa?Aa??E??A???E??aA2 2010带入条件③,有 1,00A1??由此解得

???0???02E0A2??aE0???0, ???0

2?Ercos????00(r?a)

?1(r,?)??所以

?2(r,?)??[1????0a2()]E0rcos????0r (r?a)

4.10 一个半径为b、无限长的薄导体圆柱面被分割成四个四分之一圆柱面,如题4.10图所示。

第二象限和第四象限的四分之一圆柱面接地,第一象限和第三象

y 限分别保持电位

U0和?U0。求圆柱面内部的电位函数。

0 b o U0 0 解 由题意可知,圆柱面内部的电位函数满足边界条件为

x

① ?(0,?)为有限值;

?U0

题4.10图

由条件①可知,圆柱面内部的电位函数的通解为

?U0?0??(b,?)????U0??00????2?2????????3?23?2???2?;

?(r,?)??rn(Ansinn??Bncosn?)n?1? (r?b)

代入条件②,有 由此得到

?b(Ann?1?nsin??Bncno?s??)b?(,)

1An?nb?2???(b,?)sinn?d??01b?n?23?2[?U0sinn?d??0??U0sinn?d?]?U0(1?cosn?)?bnn??2U0,n?1,3,5,?n?n?b??0,n?2,4,6,

1Bn?nb?2???(b,?)cosn?d??b?[?Un01?203?2cosn?d??0U??0cosn?d?]?

n?3?2U0,?(?1)2nn?b?U0n?3n?(sin?sin)??0,?bnn?22n?1,3,5,n?2,4,6,

?(r,?)?故

2U0?n?1,3,5,??n?31rn()[sinn??(?1)2cosn?]nb (r?b)

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库电磁场与电磁波课后习题及答案--第四章习题解答(2)在线全文阅读。

电磁场与电磁波课后习题及答案--第四章习题解答(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/405927.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: