南京工程学院自动化学院本科毕业设计(论文)
直流电桥的特点是信号不会受各元件和导线的分布电感及电容的影响,抗干扰能力强,但因机械应变的输出信号小,要求用高增益和高稳定性的放大器放大。
下图为一直流供电的平衡电阻电桥,Ein接直流电源E:
图2.6 传感器结构原理图
当电桥输出端接无穷大负载电阻时,可视输出端为开路,此时直流电桥称为电压桥,即只有电压输出。
当忽略电源的内阻时,由分压原理有: uo?uBD?uAB?uAD
?E(R1R4?)R1?R2R3?R4RR?R2R4 = E (2.2) ? 1 3 (R1?R2)(R3?R4)
当满足条件R1R3=R2R4时,即
R1?R4(2.3)
R3
R2uo=0,即电桥平衡。式(2.3)称平衡条件。
应变片测量电桥在测量前使电桥平衡,从而使测量时电桥输出电压只与应变片感受的应变所引起的电阻变化有关。
若差动工作,即R1=R-△R,R2=R+△R,R3=R-△R,R4=R+△R,按式(2.2),则电桥输出为
?(R??R)2Euo??(R??R)?(R??R)??(R??R)?(R??R)??R??ER?k?E (2.4)
?(R??R)2? 11
南京工程学院自动化学院本科毕业设计(论文)
应变片式传感器有如下特点:
(1)应用和测量范围广,应变片可制成各种机械量传感器。 (2)分辨力和灵敏度高,精度较高。
(3)结构轻小,对试件影响小, 对复杂环境适应性强,可在高温、高压、强磁场等特殊环境中使用,频率响应好。
(4)商品化,使用方便,便于实现远距离、自动化测量。
通过以上对传感器的比较分析,最终选择了第三种方案。题目要求称重范围0~9.999Kg,重量误差不大于?0.005Kg,考虑到秤台自重、振动和冲击分量,还要避免超重损坏传感器,所以传感器量程必须大于额定称重——9.999Kg 。我们选择的是L-PSIII型传感器,量程20Kg,精度为 0.01%,满量程时误差
?0.002Kg,完全满足本系统的精度要求。 2.5.2 前级放大器部分
经由传感器或敏感元件转换后输出的信号一般电平较低;经由电桥等电路变换后的信号亦难以直接用来显示、记录、控制或进行A/D转换。为此,测量电路中常设有模拟放大环节。这一环节目前主要依靠由集成运算放大器的基本元件构成具有各种特性的放大器来完成。
放大器的输入信号一般是由传感器输出的。传感器的输出信号不仅电平低,内阻高,还常伴有较高的共模电压。因此,一般对放大器有如下一些要求:
1、输入阻抗应远大于信号源内阻。否则,放大器的负载效应会使所测电压造成偏差。
2、抗共模电压干扰能力强。
3、在预定的频带宽度内有稳定准确的增益、良好的线性,输入漂移和噪声应足够小以保证要求的信噪比。从而保证放大器输出性能稳定。
4、能附加一些适应特定要求的电路。如放大器增益的外接电阻调整、方便准确的量程切换、极性自动变换等。
我们考虑了以下几种方案:
方案一 利用普通低温漂运算放大器构成多级放大器。
普通低温漂运算放大器构成多级放大器会引入大量噪声。由于A/D转换器需要很高的精度,所以几毫伏的干扰信号就会直接影响最后的测量精度。所以,此种方案不宜采用。
方案二 由高精度低漂移运算放大器构成差动放大器。
差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器,如下图所示:
12
南京工程学院自动化学院本科毕业设计(论文)
图2.7 利用普通运放构成的放大器
电阻R1、R2和电容C1、C2、C3、C4用于滤除前级的噪声,C1、C2为普通小电容,可以滤除高频干扰,C3、C4为大的电解电容,主要用于滤除低频噪声。
优点:输入级加入射随放大器,增大了输入阻抗,中间级为差动放大电路,滑动变阻器R6可以调节输出零点,最后一级可以用于微调放大倍数,使输出满足满量程要求。输出级为反向放大器,所以输出电阻不是很大,比较符合应用要求。
缺点:此电路要求R3、R4相等,误差将会影响输出精度,难度较大。实际测量,每一级运放都会引入较大噪声,对精度影响较大。
方案三 采用专用仪表放大器,如:AD620,INA126等。
此类芯片内部采用差动输入,共模抑制比高,差模输入阻抗大,增益高,精度也非常好,且外部接口简单。
以AD620为例,内部结构如下图所示:
图2.8 AD620的内部等效图
13
南京工程学院自动化学院本科毕业设计(论文)
接口如下图所示:
图2.9 AD620的接口图
电路的工作原理:A1、A2工作在负反馈状态,其反向输入端的电压与同相输入端的电压相等。即Rg两端的电压分别为Vin+、Vin-。因此
i?Vin??Vin?GRg(2.5)
设图(2.8)中电阻R1=R2=R,则A1、A2两输出端的电压差U12为 U12?iG(R1?R2?Rg)
2R?(Vin??Vin?)(1?) Rg (2.6)
将式(2.6)代入式(2.5)得
2R
VO??U12??(1?)(Vin??Vin?)Rg
放大器的增益Av为
AV?UO(Vin??Vin?) 2R??(1?) Rg (2.7) 可见,仅需调整一个电阻Rg,就能方便的调整放大器的增益。由于整个电路对称,调整时不会造成共模抑制比的降低。
在接口图(2.9)中,通过改变可变电阻R3的阻值大小来改变放大器的增益,放大器增益计算公式如下:
49.4K?G??1 (2.8)
R3AD620 具有体积小、功耗低、精度高、噪声低和输入偏置电流低的特点。其最大输入偏置电流为20nA,这一参数反映了它的高输入阻抗。AD620在外接电阻Rg时,可实现1~1000范围内的任意增益;工作电源范围为±2.3~±18V;
14
南京工程学院自动化学院本科毕业设计(论文)
最大电源电流为1.3mA;最大输入失调电压为125?V;频带宽度为120kHz(在G=100时)。
基于以上分析,我们决定采用制作方便而且精度很好的专用仪表放大器AD620。
2.5.3 A/D 转换器
A/D转换器选用的原则:
1、A/D 转换器的位数。A/D 转换器决定分辨率的高低。在系统中,A/D 转换器的分辨率应比系统允许引用误差高一倍以上。
2、A/D 转换器的转换速率。不同类型的A/D 转换器的转换速率大不相同。积分型的转换速率低,转换时间从几豪秒到几十毫秒,只能构成低速A/D 转换器,一般用于压力、温度及流量等缓慢变化的参数测试。逐次逼近型属于中速A/D 转换器,转换时间为纳秒级,用于个通道过程控制和声频数字转换系统。
3、是否加采样/保持器。
4、A/D 转换器的有关量程引脚。有的A/D 转换器提供两个输入引脚,不同量程范围内的模拟量可从不同引脚输入。
5、A/D 转换器的启动转换和转换结束。一般A/D 转换器可由外部控制信号启动转换,这一启动信号可由CPU提供。转换结束后A/D 转换器内部转换结束信号触发器置位,并输出转换结束标志电平。通知微处理器读取转换结果。
6、A/D 转换器的晶闸管现象。其现象是在正常使用时,A/D 转换器芯片电流骤增,时间一长就会烧坏芯片。为防止这种现象,可采取如下措施:
(1)加强抗干扰措施,尽量避免较大的干扰电流进入电路;
(2)加强电源稳压滤波措施, 在A/D 转换器电源入口处加退耦滤波电路,为防止窄脉冲波窜入在电解电容上再接一高频滤波电容;
(3)在A/D 转换器的电源端接一限流电阻,可在出现晶闸管现象时,有效地把电流限定在允许范围内,以防止烧坏器件。
选择A/D 转换器除考虑上述要点外,为防止对A/D 转换器的技术指标的影响,还要注意以下几个问题:
(1)工作电源电压是否稳定; (2)外接时钟信号的频率是否合适; (3)工作环境温度是否符合器件要求; (4)与其它器件是否匹配; (5)外接是否有强的电磁干扰; (6)印刷线路板布线是否合理。
由上面对传感器量程和精度的分析可知:A/D转换器误差应在3g以下。
15
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库电子称毕业设计 - 图文(4)在线全文阅读。
相关推荐: