77范文网 - 专业文章范例文档资料分享平台

熵值法的原理及实例讲解

来源:网络收集 时间:2018-12-27 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

熵值法

1.算法简介

熵值法是一种客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重。设有m个待评方案,n项评价指标,形成原始指标数据矩阵X?(xij)m?n,对于某项指标xj,指标值Xij的差距越大,则该指标在综合评价中所起的作用越大;如果某项指标的指标值全部相等,则该指标在综合评价中不起作用。

在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个方案的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大!因此,可根据各项指标的变异程度,利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据!

2.算法实现过程

2.1 数据矩阵

?X11?X1m??????其中Xij为第i个方案第j个指标的数值 A????X??n1?Xnm?n?m2.2 数据的非负数化处理

由于熵值法计算采用的是各个方案某一指标占同一指标值总和的比值,因此不存在量纲的影响,不需要进行标准化处理,若数据中有负数,就需要对数据进行非负化处理!此外,为了避免求熵值时对数的无意义,需要进行数据平移: 对于越大越好的指标:

'Xij?Xij?min(X1j,X2j,?,Xnj)max(X1j,X2j,?,Xnj)?min(X1j,X2j,?,Xnj)?1,i?1,2,?,n;j?1,2,?,m对于越小越好的指标:

'Xij?max(X1j,X2j,?,Xnj)?Xijmax(X1j,X2j,?,Xnj)?min(X1j,X2j,?,Xnj)?1,i?1,2,?,n;j?1,2,?,m为了方便起见,仍记非负化处理后的数据为Xij

2.3 计算第j项指标下第i个方案占该指标的比重

Pij?Xij?Xi?1n(j?1,2,?m)

ij2.4 计算第j项指标的熵值

ej??k*?Pijlog(Pij),其中k?0,ln为自然对数,ej?0。式中常数k与样本数m有关,i?1n一般令k?1lnm,则0?e?12.5 计算第j项指标的差异系数。

对于第j项指标,指标值Xij的差异越大,对方案评价的作用越大,熵值就越小

gj?1?ej , 则:gj越大指标越重要

2.6 求权数

Wj?gj?gj?1m,j?1,2?m

j2.7计算各方案的综合得分

Si??Wj?1mj*Pij(i?1,2,?n)

3.熵值法的优缺点

熵值法是根据各项指标指标值的变异程度来确定指标权数的,这是一种客观赋权法,避免了人为因素带来的偏差,但由于忽略了指标本身重要程度,有时确定的指标权数会与预期的结果相差甚远,同时熵值法不能减少评价指标的维数!

理解熵值法 1.

1

学习熵值法,熵值法是一种理论的数学方法,从计算机科学角度上看,属于一种算法。要运用熵值法当然要理解它,搞懂它。

2.

2

熵值法原理: 熵的概念源于热力学,是对系统状态不确定性的一种度量。在信息论中,信息是系统有序程度的一种度量。而熵是系统无序程度的一种度量,两者绝对值相等,但符号相反。根据此性质,可以利用评价中各方案的固有信息,通过熵值法得到各个指标的信息熵,信息熵越小,信息的无序度越低,其信息的效用值越大,指标的权重越大。

3.

具体的方法步骤见附图课件。

3

END

利用Excel进行熵值法计算求解

1. 给出算例,题干是购买教车的一个决策矩阵,给出了四个方案供我们进行选择,每个方案中均有相同的六个属性,我们需要利用熵值法求出各属性的权重,级在方案中的贡献度。

2.

一:求第j个属性下第i个方案Ai的贡献度,公式为附图一,在excel中,先求出各列的和,然后用每行的数值比上列和,形成新的矩阵,如附图2所示。

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库熵值法的原理及实例讲解在线全文阅读。

熵值法的原理及实例讲解.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/392129.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: