南湖学院
工程测试技术基础
题 目: 基于超声波传感器的测距系统设计 系 部: 机电系 专 业: 机械设计制造及其自动化 班 级:
姓 名: 学 号:
2010年 6月 24日
基于超声波传感器的测距系统设计
【摘要】
超声波以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。论文在分析可行性、可靠性的基础上,参照工程设计方法,确立了结构化设计的思路。本文设计了一套超声波检测系统。本超声波测距系统选用了SensComp公司生产的Polaroid 6500系列超声波距离模块和600系列传感器,微处理器采用了ATMEL公司的AT89C51,它根据超声波在空气中传播的反射原理, 以超声波传感器为接口部件, 应用单片机技术和超声波在空气中的时间差来测量距离。该系统主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个模块构成。设计利用51单片机系统的I/O口,使超声波传感器发出40KHz的超声波,反射回来的超声波信号,经过放大和整形电路进入单片机,比较调试后确定其对应的距离,完成测距。采用硬件电路和软件控制相结合,电路结构简单,低成本,操作方便,工作稳定,测量精度高,可实现3米内测距,盲区7厘米,具有LCD显示功能。
【关键词】 超声波 传感器 测距 程序 单片机
1. 超声波传感器的基本概念
超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。
以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。它的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。
2. 超声波测距原理
为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器
超声波测距通常采用度越时间法,即利用s=vt/2计算被测物体的距离。式中s为收发头与被测物体之间的距离, v为超声波在介质中的传播速度(v = 331. 41+T/273m/s),t为超声波的往返时间间隔。工作原理为:发射头发出的超声波以速度v在空气中传播,在到达被测物体时被其表面反射返回,由接收头接收,其往返时间为t,由s算出被测物体的距离。T为环境温度,在量精度要求高的场合必须考虑此影响,但在一般情况下,可舍去此法,由软件进行调整补偿。
由于超声波也是一种声波,其声速c与温度有关,附表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,就可以求出距离。这就是超声波测距原理。
表1 温度与声速的关系
温度(℃) 声速(m/s) -30 313 -20 319 -10 325 0 333 10 338 20 344 30 349 100 386 3. 本系统超声波传感器及其测距原理
超声波是指频率高于20KHz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
超声波测距的原理一般采用渡越时间法TOF(time of flight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即
4.
硬件电路设计
我们设计的超声波测距系统由Polaroid 600系列传感器、Polaroid 6500系列超声波距离模块和AT89C51单片机构成。
4.1. Polaroid 600系列传感器
此超声波传感器是集发送与接收一体的一种传感器。传感器里面有一个圆形的薄片,薄片的材料是塑料,在其正面涂了一层金属薄膜,在其背面有一个铝制的后板。薄片和后板构成了一个电容器,当给薄片加上频率为49.4kHz、电压为300VAC pk-pk的方波电压时,薄片以同样的频率震动,从而产生频率为49.4kHz的超声波。当接收回波时,Polaroid 6500内有一个调谐电路,使得只有频率接近49.4kHz的信号才能被接收,而其它频率的信号则被过滤。
Polaroid 600超声传感器发送的超声波具有角度为30度的波束角[3],如图1所示:
超声波传感器既可以作为发射器又可以作为接收器,传感器用一段时间发射一串超声波束,只有待发送结束后才能启动接收,设发送波束的时间为D,则在D时间内从物体反射回的信号就无法捕捉;另外,超声波传感器有一定的惯性,发送结束后还留有一定的余振,这种余振经换能器同样产生电压信号,扰乱了系
统捕捉返回信号的工作。因此,在余振未消失以前,还不能启动系统进行回波接收,以上两个原因造成了超声传感器具有测量一定的测量范围。此超声波最近可以测量37cm。 4.2.
Polaroid 6500系列超声波距离模块
Polaroid 6500系列超声波距离模块的硬件电路如图2所示:
TL851是一个经济的数字12步测距控制集成电路。内部有一个420KHz的陶瓷晶振,6500系列超声波距离模块开始工作时,在发送的前16个周期,陶瓷晶振被8.5分频,形成49.4KHz的超声波信号,然后通过三极管Q1和变压器T1输送至超声波传感器。发送之后陶瓷晶振被4.5分频,以供单片机定时用。TL852是专门为接收超声波而设计的芯片。因为返回的超声波信号比较微弱,需要进行放大才能被单片机接收,TL852主要提供了放大电路,当TL852接收到4个脉冲信号时,就通过REC给TL851发送高电平表明超声波已经接收。 4.3.
AT89C51单片机
本系统采用AT89C51来实现对Polaroid 600系列传感器和Polaroid 6500系列超声波距离模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。 超声波测距的硬件示意图如图3所示:
5. 系统软件设计
系统程序流程图如图4所示:
工作时,微处理器AT89C51先把P1.0置0,启动超声波传感器发射超声波,同时启动内部定时器T0开始计时。由于我们采用的超声波传感器是收发一体的,所以在发送完16个脉冲后超声波传感器还有余震,为了从返回信号识别消除超声波传感器的发送信号,要检测返回信号必须在启动发射信号后2.38ms才可以检测,这样就可以抑制输出得干扰。当超声波信号碰到障碍物时信号立刻返回,微处理器不停的扫描INT0引脚,如果INT0接收的信号由高电平变为低电平,此时表明信号已经返回,微处理器进入中断关闭定时器。再把定时器中的数据经过换算就可以得出超声波传感器与障碍物之间的距离。
6. 实验数据处理
由于受环境温度、湿度的影响,超声传感器的测量值与实际值总有一些偏差,表1列出了本超声测距系统测量值与对应的实际值:
表1超声测距系统测量值与实际值 单位:cm
从表中的数据可以看出,测量值总是比实际值大出大约7cm,经过分析原因主要有三个方面:第一方面,超声波传感器测得的数据受环境温度的影响;第二方面,指令运行需占用一定的时间而使得测量的数据偏大;第三方面,为了防止其他信号的干扰,单片机开始计数时,驱动电路发送16个脉冲串。对于单个回声的方式,当驱动电路接收到碰到障碍物返回的第四个脉冲时就停止计数,所以最终测得的时间比实际距离所对应的时间多出四个脉冲发送的时间。为了减小测量值与实际值的偏差,我们采用最小二乘法[4~5]对表1的数据进行修正。经过拟合,我们得到下面的方程: y=1.0145x-9.3354 (其中:y为实际值,x为测量值)
修正后本超声波测距系统测量值与实际值的对应关系如表2所示: 表2 修正后超声测距系统测量值与实际值 单位:cm
从修正后的数据我们可以看出,系统的测量误差在±2%以内,满足我们的测量要求。
7. 结论
利用超声波传感器进行测距,其中主要的就是要保证在电路设计上一定要满足电路工作的可靠性、稳定性。经过实验与分析,我们认为用6500系列距离模块和600系列超声波传感器进行距离的测量简单、经济、可靠,测得数据的误差比较小。
8. 参考文献:
[1] 孙串友, 孙晓斌 编著. 感测技术基础[M]. 电子工业出版社. 2001 [2] 何希才 编著. 传感器及其应用电路[M]. 电子工业出版社. 2001
[3] 刘喜昂, 周志宇. 基于多超声传感器的机器人安全避障技术[J]. 测控技术. 2003,23(2):71-73 [4] 翟国富,刘茂恺. 一种实时高精度的机器人用超声波测距处理方法[J]. 应用声学, 1990(1):17-24 [5] 方崇智, 萧德云. 过程辨识[M]. 清华大学出版社.1988
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库基于超声波传感器的测距系统设计在线全文阅读。
相关推荐: