解决小数点的位置问题。结合数的含义,帮助学生理解“商的小数点要与被除数的小数点对齐”的道理。这里24表示24个十分之一,除得的结果是6个十分之一,所以小数点要和被除数的小数点对齐。
为了帮助学生理解算理,教学例1前,可以先复习整数除法,如,224÷4。让学生明确,每次除的被除数和商是多少个十,或多少个一,为后面理解算理作准备。
2.例2:除到被除数的末尾还有余数。
除到被除数的末尾还有余数,要在后面添0继续除。同样也是结合数的含义理解。
学习完例1、例2后,小精灵提示学生总结除数是整数的小数除法的方法,教材这里虽然没有给出法则,但是因为这是小数除法的基础,应该让学生在理解算理的基础上掌握算法。引导学生回顾总结小数除以整数的计算步骤以及要注意的问题,可以总结成: ①按照整数除法的方法去除,商的小数点和被除数的小数点对齐。②如果除到被除数的末尾仍有余数,就在余数末尾添0再继续除。
3.例3:特殊情况。
教学被除数比除数小,整数部分不够除1,商0,点上小数点再除。事实上,和整数除法相同,除到被除数的哪一位,商0,就在那一位写0,不同的是整数除法最高位上的0不写,而小数除法如果商的最高位是个位商0,要用0占位。
教材没有特别说明验算的方法,让学生用已学的知识自己思考如何验算。 (二)一个数除以小数
小数除法教学的重点,关键在于把除数是小数的除法转化成除数是整数的除法。根据除数和被除数小数位数的情况,安排了2个例题。一个是被除数和除法的小数位数相同,一个是被除数比除数的小数位数少。还有被除数比除数的小数位数多的情况安排在练习中。
1.例4:被除数的小数位数和除数小数位数相同。 (1)突出基本方法是“把除数转化成整数”。
(2)用虚线框的图示呈现了根据商不变的性质,把除数和被除数同时扩大到原来的100倍,使除数变成整数的过程。之后出示简便的写法。
(3)教学前可先复习商不变性质,帮助学生理解算理。 2.例5:被除数的小数位数比除数少。
(1)用学生提问“被除数的位数不够怎么办?”引起思考。
(2)通过虚线框里的图示说明在把除数变成整数小数点要向右移动两位,根据商不变性质,被除数也要右移两位,而12.6只有一位小数,所以要在末尾用“0”补足。
(3)至此,小数除法计算的各种情况均已涉及,通过小精灵的话引导学生对小数除法的计算方法进行总结。在学生概括的基础上,教师加以提炼和完善。还可以总结成三个步骤:一看:看清除数有几位小数;二移:把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不足时,用“0”补足;三算:按照除数是整数的小数除法的方法计算。
(三)商的近似数
小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。如在计算钱数时,一般只精确到角或分,这样就涉及到求计算结果的近似数。
1.例6:取商的近似数。
(1)体会取商的近似数的必要性。小数除法中取近似数有两种情况,一种是除不尽的时候,一种是除的尽,但是小数位数比较多,根据实际需要不用这么多。为了让学生体会,教材不再提示用计算器计算,而是在笔算的过程中感受除不尽的时候,根据实际需要取近似数。
(2)掌握取商的近似数的方法。小精灵给出求商的近似数的一般方法。在学生熟练后,还可以介绍一种简便的方法,即除到要保留的小数位数后,不用再继续除,只要把余数同除数作比较,若余数比除数一半小,就说明求出下一位的商小于5,直接舍去;若余数等于或大于除数的一半,就说明求出下一位的商等于或大于5,就在已经求得的商的末一位上加1。
(四)循环小数
1.例7:教学商从某一位起,一个数字重复出现的情况。 为认识循环小数提供感性材料。 2:例8和循环小数的认识。
通过计算两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复出现某个数字;另一种是从某位起几个数字依次不断重复出现。
由此引出循环小数的概念并介绍循环节和简便记法。
教学中注意引导学生探究商循环出现的原因。结合学生发现的规律,理解商出现循环的原因,是余数的重复出现。
3.有限小数和无限小数。
组织学生结合具体计算,讨论“两个数相除,如果不能得到整数商,所得的商会有哪些情况”,由商的两种情况,介绍有限小数和无限小数的概念。以前学生对小数概念的认识仅限于有限小数。学习了循环小数以后,小数概念的内涵进一步扩展了,循环小数就是一种无限小数。
(五)用计算器探索规律。 1.例9。
教材编排分三个层次:用计算器计算—观察发现规律—用规律写商。
教材给出一组算式,让学生用计算器计算出结果,然后寻找商的规律:都是循环小数;循环节都是被除数的9倍。最后根据发现的规律直接写出后面算式的商。培养学生归纳、推理的能力。
(六)解决问题
解决问题中不出有特殊数量关系的连除问题(“双归一”)的类型,数量关系在前面已学,直接在练习中应用。
1.例10:根据实际情况用“进一法”和“去尾法”取商的近似值
前面介绍了用四舍五入的方法求商的近似数,但实际应用中还会用到其他的方法。比如进一法和去尾法。教材安排了例10,强调“在解决实际问题时,要根据实际情况选择适当的方法取商的近似值”。安排了两道小题,分别教学:在解决问题时,需要根据实际用“进一法”(第1小题)和“去尾法”(第2小题)取商的近似值。两题算出的结果都是小数,由于要求的瓶子数和礼品盒数都必须是整数,因此都要取计算结果的近似值。
教学中让学生明确:在取近似值时,不能机械地使用“四舍五入法”,而是要根据具体情况确定是“舍”还是“入”。
(七)整理和复习
教材给出整理的线索,帮助学生梳理知识结构。
第1题,回顾小数乘除法的计算方法,沟通小数乘除法与整数乘除法的联系,突出转化的思想。 第2题,开放性、综合性较强,而且联系实际,注重学生解决问题能力的培养。 五、教学建议
1. 抓住新旧知识的连接点,在理解算理的基础上,引导学生通过讨论总结小数除法的计算方法。 本单元内容与旧知识联系十分紧密。小数除法的计算法则是以整数除法中被除数和除数同时乘上相同的数(0除外)商不变,以及小数点位置移动规律等知识为基础来说明的。小数除法的试商方法、除的步骤和整数除法基本相同,不同的只是小数点的处理问题。因此,要注意复习和运用整数除法的有关知识,为新知识的学习奠定好基础。
同小数乘法一样,教学中要让学生在理解算理的基础上,及时归纳、总结小数除法的计算方法,帮助学生形成良好的计算能力。
2.要注意突出重点,攻破难点。
除数是整数的小数除法,要注意讲明商的小数点为什么与被除数的小数点对齐。小数除以小数,要重点说明除数怎样转化为整数。讲清了一般的计算原理,注意克服难点:小数点的处理问题。学生
在计算中经常出现只去掉除数的小数点,而不把被除数的小数点相应地向右移动,或者把小数点的位置移错,使商的小数点常常处理错。为了帮助学生攻破难点,可适当安排有针对性的单项练习。
{C}{C}{C}{C}{C}{C}如学完小数除法后,学生计算“0.63÷0.6”的正确率较低,错误主要有两方面。第一,商的小数点位置不对(如图1)。例题中没有单独安排“被除数比除数小数位数多”的类型,只是在“做一做”中以练习形式出现,而且将被除数、除数的位数多少的三种情况安排在一节课中对一些学生来说掌握起来可能有困难。第二,商中间的0漏掉(如图2)。商中间有0的除法仅在三年级“除数是一位数的除法”
时出现过,而四年级“除数是两位数的除法”受到计算步数的制约,避免计算的繁杂,没有将“除数是两位、商是三位”作为教学要求,因此,商中间有0的除法基础是薄弱的。基于这两个原因,教学中,一方面需要关注要点,重视“除数位数与被除数的小数位数不同”这一除法类型;另一方面,需要加强商中间有0的除法的铺垫与练习,以弥补薄弱,突破难点。
第四单元 可能性
一、教学内容
1.体验事件的确定性和不确定性,列出所有的可能。 2.定性描述可能性的大小。
本单元内容由原实验教材三年级上册移来。
关于“可能性”这一内容,原来的实验教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的,知道事件发生的可能性是有大小的。第二次在五年级上册,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,学会用分数描述事件发生的概率。但实践表明,低年级学生对不确定现象理解有困难,并且《标准(2011)》对这部分内容也进行调整,第一学段不再学习概率的内容,将可能性的教学移到第二学段。
二、教学目标
1.在具体情境中,通过现实生活中的有关实例使学生感受简单的随机现象,初步体验有些事件的发生是确定的,有些是不确定的。
2.通过实际活动(如摸球),使学生能列出简单的随机现象中所有可能发生的结果。
3.通过试验、游戏等活动,使学生感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并能和同伴进行交流。
三、编排特点
1.运用数据分析来体会随机性,强调对可能性大小的定性描述。
在可能性知识的教学中,应加强对学生概率素养的培养,增强学生对随机思想的理解,使学生充分感受和体验简单随机现象中数据的随机性,能对一些简单的随机现象发生的可能性大小作出定性描述,而不要把丰富多彩的可能性内容变成了机械的计算和练习。《标准(2011)》中也提出运用数据分析来体会随机性,加强对可能性大小的理解,使这部分内容更具可操作性,符合小学阶段学生学习的特点。
2.提供丰富的现实学习素材,促进数学知识的理解。
本单元教材不仅利用丰富多采的呈现形式,为学生提供现实的、有趣的学习素材,同时注意所设计的教学活动能使学生经历知识的形成过程。首先,教材选取学生熟悉的生活情境作为教学素材,以
“联欢会上抽签表演节目”(例1)、大量的活动(做一做、例2)等来丰富学生对不确定现象的体验,使学生初步了解现实世界中存在着的不确定现象,并逐步知道事件发生的可能性有大有小;其次,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏、抛硬币、掷骰子等,这些活动都特别注意联系学生的生活实际,不但便于教师组织教学,更使学生在大量观察、猜测、试验、思考与交流的数学活动中,逐步丰富对随机现象和可能性大小的体验,经历知识的形成过程;再次,教科书第49页编排了“生活中的数学”,一方面可以加深学生对所学数学知识的理解,另一方面也使学生感受到可能性知识与生活的联系,有利于培养学生的应用意识。
3.注重方法的指导和知识的整理。
要体验随机现象中数据的随机性,就要求学生在进行相关试验活动或游戏活动时必须遵守一定的规则,例如摸球时不能看着球摸,也不能摸完一次后不摇匀球就接着摸,这样都不能很好地体现随机性。教材在相关例题及习题中明确提出了“放回去摇匀再摸”“按要求涂一涂”“随意摸一张”等要求,对学生的试验和游戏活动进行方法的指导,使学生能更好地体验数据的随机性。
四、具体编排 1.主题图。
主题图从学生已有的生活经验出发,呈现了学生熟悉的“联欢会上抽签表演节目”的场景,使学生体验在现实生活中存在着不确定现象,充分感受数学与生活的联系。
教师还可以利用买体育彩票、抽奖等现实题材来引入可能性的内容。 2.例 1:体验事件发生的确定性和不确定性。
由主题图的情境自然引出例题的学习。原来教材安排的摸球活动,这里的抽签游戏更贴近学生的生活,也更容易让学生理解和体验,可以让学会亲历事件发生的必然性和随机性。
例题通过一次一次的抽签的活动,让学生亲身感受、体验事件发生的确定性和不确定性。第一次,小明可能会抽到什么节目?这里让学生体会有三种可能,每个结果发生的可能性是相同的。小明抽到跳舞后,剩下的两张,小丽可能会抽到什么?体会有两种可能,并且不可能是跳舞。最后只剩唱歌,小雪一定会抽到它。
学生在活动过程中,通过观察、实践、描述和交流充分感受事件发生的确定性和不确定性。 3.例2:正向体会可能性的大小。
例2和例3都是体会可能性的大小,分别从正反两个方向体会。
例2编排分两个层次:一是,列出可能发生的结果。通过摸棋子活动,让学生通过动手试验后列出所有可能发生的结果。也可以让学生先猜测后验证。二是,通过统计规律,感受可能性的大小。接下来,让学生在收集、分析数据以及讨论交流统计结果的活动中,初步感受随机事件发生的统计规律性,并知道事件发生的可能性是有大小的。最后,引导学生根据试验的统计结果对下一次试验的情况作出推测,使学生进一步感受可能性的大小。要注意让学生明白:单次试验的结果是不确定的,但当大量重复试验就呈现一种规律。比如老师可以提问:再摸一次一定能摸到红色的棋子吗?让学生体会:再摸一次,两种颜色的棋子都有可能,但是摸出红色的可能性大。
4.例3:逆向推理,体会可能性的大小。
教材同样是通过统计规律,让学生感受可能性的大小。
这里是根据摸棋子试验的统计结果来推测原来盒子里的球那种颜色的多,通过实际验证,进一步体会随机事件发生的统计规律性,感受可能性的大小。
教学时可以分小组活动,记录统计的结果,从每次摸出的情况到小组统计的结果,最后到小组汇总的结果,让学生感知和理解试验次数足够多时,实验数据呈现出的统计规律性。
五、教学建议
1.引导学生借助观察、猜测、实验等来体验事件的确定性与不确定性,感受可能性的大小。 对于不确定性现象和可能性,第二学段的学生在生活中已经有了一定的经验和体验。在教学中,不管是在学生熟悉的生活情境还是感兴趣的游戏活动中(如掷硬币、玩转盘、摸卡片等),教师都应
注意创设各种问题情境,充分调动学生的主动性和积极性,鼓励学生亲自动手试验,在试验中体验事件发生的可能性,让学生在具体的操作活动中进行独立思考并主动与同伴交换自己的想法,引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性,经历知识的形成过程。
但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小,为后面的学习打下良好的基础。
2.把握好教学要求。
本单元主要是让学生对随机现象“初步体验”和“感受”,因此,教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生能够结合具体的问题情境,用“一定(肯定)”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。
综合与实践 掷一掷
一、利用的数学知识
1.组合(两个骰子上的数字之和)。
2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数)。
3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的)。 二、活动步骤 (一)示范游戏
1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)
2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。
3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。 (二)小组内游戏,探索结论。
通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。
(三)理论验证
通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。
第五单元 简易方程
一、教学内容 1.用字母表示数。
2.解简易方程(解方程、实际问题与方程)。
和原实验教材相比,变化有:一是,增加用字母表示常见数量关系的例题,为解决实际问题列方程作准备。二是,根据课标要求,明确给出等式的性质(原来只是借助天平平衡来理解),利用等式的性质解方程。三是,解方程和列方程解决问题分开编排,分散难点,并且解方程的类型更全面。
二、教学目标
1.使学生初步认识用字母表示数的作用,发展符号意识,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。初步学会根据字母所取的值,求含有字母式子的值。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库新人教版小学数学五年级上册教材分析(3)在线全文阅读。
相关推荐: