0.02.
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462141
5.2.PropagationofanOseenvortex
Inordertoevaluateerrorsassociatedwithvorticityadvecting/di usingthroughthecomputationalboundary,weagainusetheanalyticalsolutionassociatedwithanOseenvortex.Thevortexisinitializedat(x,y)=(0,0)andadvectedbyanotherwiseuniform owwithspeedequaltothemaximumvelocityofthevortex.ThevorticityandazimuthalvelocityarestillgivenbyEqs.(39)and(40),respectively,r¼q
butðxÀUtÞ2
þy2 withtheradius,rrede nedwith.
Again,Candtheinitialtime,t0aresetsothatatt=t0,themaximumspeedassociatedwiththevortexaloneisUandoccursatr=R.AgainwesetRe=300.
Fig.8showstheerrorinthevelocityattheoriginforadomainthatnominallyextendsto±5RwithD¼0:05.Sincethevelocitydecayslike1/r,ithasalong-rangeR
e ect.Toachievelessthan1%errorwithoutcorrectedboundaryconditions,thedomainwouldneedtoextendto±100R.Theerrorisinitiallyzero(evenwiththeuncorrectedboundaryconditions)duetosymmetry.Astimepro-gresses,theerrorincreasesandreaches25%forNg=1.Thisoccursasthevortexpropagatesthroughtherightboundaryofthedomain.WithNg>1,thevortexispro-gressivelytransferredtothenextlargestmeshatintervalsoftime5·2nÀ1,n=1,...,Ng.WithNg=5,theerrorstaysbelow1%uptonon-dimensionaltime80,whenitleavesthecoarsest,largestmesh.Therearesmalloscillationsintheerrorevidentduringgrid-to-gridtransfertimes.Theassociatedtotalcirculationchangesbyatmost5%duringthesetransfers.WithNg=10,errorfromtheboundaryconditionisundetectableuptotime100andtheerroriscontrolledbythesecond-orderdiscretizationerrorandstaysbelowabout0.2%.Thesolutionattime100isshowninFig.9onthelargestmesh.Themagni edregionisshownasinaninsetandshowscontoursofthevorticityandnormalvelocity.Bytime100,thevortexwouldhavephysicallydi usedtoacoresizeofabout1.6R,whereasthegridspacingonthelargestdomainis12.8R!Theveloc-ity eldnearthecoreiscompletelywrong,butthecircula-
tionisnearlyconservedandthisinducesthecorrectpotential owfarfromthecore.Thephysical(smallest)domainisalsodepictedontheplotand,asisshowninFig.8,theerrorattheoriginisstilllessthanaboutoneper-centofthecorrectvalueatthattime.5.3.Potential owoveracylinder
Asa nalexample,weconsiderthepotential owinducedatt=0+byanimpulsivelystartedcylinderofdiameterD.Theimmersedboundaryuses571equallyspacedLagrangianpointsandthedomainisde nedsnuglyaroundthebody,extendingto±0.55DineachdirectionwithgridspacingD=0.0055D.Weinitiateauniform
ow
一些ME专业提升的论文。
2142T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
withspeedUandletthebody‘‘materialize’’att=0.Thesolutionisobtainedbyperforming1time-stepoftheNavier–Stokessolutionusingthefastmethodwithmulti-domainboundaryconditions.A ow eldobtainedwithNg=4ispresentedwiththeexactpotential owsolutioninFig.10.Thestreamlinesarefoundtobeinagreementwithaslightdi erenceneartheimmersedboundaryduetotheregularizednatureofthediscretedeltafunction.InFig.11,wecomparetheexactpotential owsolutiontothenumericalsolutionalongthetopboundaryoftheinner-mostdomainfordi erentNg.WeobservetheestimatedOð4ÀNgÞconvergenceÀ3(seeAppendixB)downtoalevelofabout10afterwhichtheleading-ordererrorisdomi-natedbythetruncationerrorarisingfromthediscretedeltafunctionsattheimmersedboundaryandthediscretizationofthePoissonequation.6.Performanceofthefastmethod
Weconcludebymeasuringtheperformanceofthefastnullspace/multi-domainimmersedboundarymethodcom-paredtotheoriginalperformancebytheIBPM.First,wesimulate owsoverastationarycircularcylinderofdiam-eterDandcomparetopreviouslypublishedresults[18,36].ComputationsareperformedonthedomainDð1Þ¼½À1;3 ½À2;2 withD=0.02DwhereNgisvariedbetween1and5.Thecylinderiscenteredattheorigin.The owisimpulsivelystartedatt=0,andthebodyissta-tionary.ThustheCholeskydecompositionisusedtosolveEq.(36).
Aftertransiente ectsassociatedwiththeimpulsively-started owhavediedaway,weexaminewakestructuresandforcesonthecylindersfromfordi erentvaluesofNg.ThesearecomparedwithpreviousresultsforRe=40and200inTables1and2,respectively.Forthesteady owatRe=40wereportcharacteristicdimensionsoftherecir-culationbubbleinthewake,andfortheunsteady owatRe=200,wereportsheddingfrequencyand uctuatingliftanddragcoe cients.CharacteristicdimensionsofthewakeareillustratedinFig.12.ItisevidentthatasNgisincreased,thefastmethodgivesnearlyidenticalresultstothepreviouslypublisheddata.ItappearsthatNg=4issuf-
Table1
Comparisonofresultsfromthefast-methodwithpreviouslyreportedvaluesforsteady-state owaroundacylinderatRe=40
l/d
a/db/dhCDSpeed-upRe=40
Present(Ng=2)1.690.600.5553.4°1.9225.8Present(Ng=3)2.010.670.5854.0°1.6818.5Present(Ng=4)2.170.700.5953.8°1.5814.2Present(Ng=5)2.200.700.5953.5°1.5511.3LinnickandFasel[18]2.280.720.6053.6°1.54–TairaandColonius[36]
2.30
0.73
0.60
53.7°
1.54
1
Table2
Comparisonofresultsfromthefast-methodwithpreviouslyreportedvaluesforunsteady owaroundacylinderatRe=200
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说实用文档Computer Methods in Applied Mechanics and Engineering(9)在线全文阅读。
相关推荐: