St
CD
CLSpeed-upRe=200
Present(Ng=2)0.2061.47±0.049±0.66121.1Present(Ng=3)0.2001.40±0.052±0.7084.7Present(Ng=4)0.1971.36±0.046±0.7065.4Present(Ng=5)0.1951.34±0.045±0.6853.0LinnickandFasel[18]0.1971.34±0.044±0.69–TairaandColonius[36]
0.196
1.35±0.048
±0.68
1
cienttorecoverthepreviousresults.Notethatfortheori-ginalIBPM,computationsareperformedoveradomainof[À30,30]·[À30,30]by300·300stretchedgridpointswiththe nestresolutionofDx=Dy=0.02.ThetimestepforallcasesarechosentobeDt=0.01tolimitthemaxi-mumCourantnumberto1.
Inthetables,speed-upisde nedasthetimerequiredtocomputethelast50timestepsinthesimulationsnormal-izedbythetimeelapsedfortheoriginalIBPM.Bymeasur-ingthelast50timesteps,wegiveaconservativeestimateforspeed-upsincetheoriginalmethodisiterativeandtyp-icallyrequiresmanymoreiterationsforearliertimes.ThuswithNg=4thefastmethodreducesthecomputationaltimebyafactorofabout15forthesteady owand65fortheunsteady ow.Wehavefoundsimilarspeed-upsinavarietyofproblemsonwhichwehavetestedthecode.Wenotethatwehavethusfaronlyimplementedthefastmethodintwodimensions(theoriginalalgorithmhas
been
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462143
validatedinbothtwoandthreedimensions).Speed-upsforthree-dimensionalproblemsarelikelytobemoredramaticasdiscussedinSection3.3.
Next,wecomparethespeed-upfromforatranslatingcircularcylindersimulatedbymovingtheLagrangianboundarypoints.NowEq.(36)issolvediterativelywiththeconjugate-gradientmethod.Acylinderoriginallyattheoriginatt=0isimpulsivelytranslatedtotheleftwithunitvelocitywithRe=200.TheinnermostdomainisselectedasDð1Þ¼½À5;1 ½À1;1 withD=0.02DandweuseNg=4multi-domains.Insidethishighlycon nedDð1Þ,thetranslatingcylindergeneratestwocounterrotat-ingvorticesinthewakeasshowninFig.13fort=3.5.Thevorticitypro leisinaccordwithpreviousresultsreportedin[36].Comparedtoacomputationperformedwiththeoriginalapproach,thepresentcomputationisfoundtobe43.4timesfaster.Recallthataspeed-upof53.0isobservedforastationarycylinder(Table2),whichsuggeststhattheoverallalgorithmisstillsolvede cientlyevenwithamovingimmersedboundary.7.Summary
Wehavereportedonimprovementstotheimmersedboundaryprojectionmethodfor owovertwo-andthree-dimensionalbodieswithprescribedmotion.Inprevi-ouswork[36],weshowedthattheIBmethodcanbeformulatedinanalgebraicallyidenticalwaytotheincom-pressibleNavier–Stokesequationswithoutanimmersedboundary.ThisformulationenablestheclassicalfractionalstepmethodtobeappliedtotheIBequations,eliminatingtheneedforanyconstitutiverelationforthemotionofthebody(andhenceassociatedsti ness),andensuringthattheno-slipanddivergence-freeconstraintsaresatis edtoarbi-trarilyhighprecision.Inthispaperweshowedthatthesolutioncanbesubstantiallyacceleratedbyemployinganullspace(discretestreamfunction)methodtosatisfyingthedivergencefree-constraint,andbyrestrictingthecom-putationtoequally-spacedmeshes.
Inthisfastmethod,theviscousterms,divergence-free,andno-slipconstraintsarestilltreatedimplicitly,butthelinearsystemsassociatedwiththePoissonequationandimplicitviscoustermscanbesolvedirectlywithfastsinetransforms.Inthesolution,thedivergence-freeconstraintisautomaticallysatis edtomachineprecision.Forstation-
arybodies,theno-slipconstraintcanalsobeenforcedtomachineprecisionbydirectsolutionoftheequationforthebodyforcesbyusingaCholeskydecomposition.Formovingbodies,iterativesolutionofthelinearsystemforthebodyforcesisstillrequired,butthesizeofthesystemisproportionaltothenumberofLagrangiansurfacepoints;thematrixispositivede niteandtheconjugate-gradienttechniqueise cientforitssolution.
NeartheIB,therestrictiontouniformmeshisastan-dardrequirementofthediscretedeltafunction;however,farfromthebody,thiswouldingeneralbeoverlyrestric-tiveasitisusefultostretchthemeshsothatthedomaincanbemadelargetoapproachthesolutiononanunboundeddomain.Wepursuedanalternativestrategyofimprovingthefar- eldboundaryconditionstothepointwherethedomaincanenclosethebody(andtheportionofthewakeonewishestoresolve)snugly.Wederivedamulti-domaintechniquethatsolvesthePoissonequationonprogressivelylarger,butcoarser,meshes.Vorticityisallowedtoadvectanddi usefrom nertocoarsermesh.Theresulting owontheoriginaldomainthenaccountsforboth(i)theslowlydecayingpotential owinducedbythebodymotion,and(ii)theslowlydecayinginducedvelocityassociatedwithvorticitythathasadvectedtolargedistancefromthebody.Whilethereiscostpenaltyassoci-atedwiththemulti-domainsolution,theoverallschemeemployingthefastnullspacemethodandmulti-domainboundaryconditionsisstillmorethananorder-of-magni-tudefasterthanouroriginalmethodintwodimensions.Thespeed-upresultsfrombene tsassociatedwiththefastnullspacemethodaswellasbeingabletousemorecom-pactdomains.
Thefastnullspacemethodandmulti-domainboundaryconditionsareequallyvalidforbothtwo-andthree-dimensional ows.Two-dimensionaltestcasesincludingstationaryandadvectingOseenvorticesand owoverimpulsively-startedcylindersdemonstratetheaccuracyofthemulti-domainboundaryconditions.WenotethatthetechniquesaregenerallyapplicabletotheincompressibleNavier–Stokesequationsonunboundeddomainswithorwithoutimmersedboundaries.Themulti-domaintech-nique,inparticular,shouldproveusefulinsimulating owsthatinvolveweakinteractionsof nite-circulationvorticesthathaveplaguedmethodsemployingperiodicorothersimpli edboundaryconditionsinthepast(e.g.[10,14]).
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说实用文档Computer Methods in Applied Mechanics and Engineering(10)在线全文阅读。
相关推荐: