OðN1=2Nð7dþð2dþ1ÞjÞÞoperationcountforEq:ð10Þto
5
Wehaveusedthefactthat6HerethefactorsN1/2orN1=N2
f(Ninarrivingattheestimate.
faretheestimatednumberofiterationsoftheconjugategradientsolver,the2Nlog2Nfactorcomesfromtwo(fast)sinetransforms,the(2d+1)jfactorfromtheLaplacian,and7dfromtheinterpolation,regularization,CT,andCoperationstogether.
OðN1=2
fNð2log2Nþ7dÞÞ
operationcountforEq:ð25Þ:
Forexample,inathree-dimensionalcasewithN=1283,Nf=103,d=3,andj=3theestimatedspeedupisabout30.Foratwo-dimensionalcasewithN=1282,Nf=200,d=2andj=3,thespeedupisabout10.ThisisforthePoissonsolvealone.AdditionalspeedupoccursbecauseitisnolongernecessarytosolveasystemAx=bforthemomentumequation.NumericalexperimentsinSection6forthetwo-dimensionalcasecon rmatleasttheorder-of-magnitudeofthespeedup(theactualspeedupisfasterthanpredicted).Finally,werecallthatthenewsystemofequationsresultsinnoiterativeerrorinsatisfyingthedivergence-freeconstraint(itisautomaticallyzerotoround-o ).
Ifthebodyisstationary,thenthePoisson-likeequationfortheforcescanbee cientlysolvedusingatriangularCholeskydecomposition.Thisresultsinavastlylowerworkpertime-step,sincetheoperationcountforthePois-sonsolveissimplyOðN2fÞ.InthiscasethecomputationalspeedislimitedonlybythesolutionofEq.(24).
Tosummarize,ifthegridisuniformandsimplebound-aryconditionsareused,itisvastlypreferabletosolveEqs.(24)–(26).Werefertothisinwhatfollowsasthefastmethod.Unfortunately,forexternal ows,thesimpli edboundaryconditionsarenote ectiveunlessthecomputa-tionaldomainisquitelarge.Sincethegridisalsorequiredtobeuniform,evenfarawayfromthebody,thelargerdomainwouldquicklynegatethebene toffastmethod.However,inthenextsectionwediscussanalternativestrat-egyforimplementingboundaryconditionsinthefastmethodthathasamoremodestcostpenalty.
4.Far- eldboundaryconditions:amulti-domainapproachThefastmethodreliesonsimpli edfar- eldboundaryconditions,namelyknownvelocitynormaltotheboundaryandknownvorticity.Thesecanbesettozeroifthecompu-tationaldomainissu cientlylarge.Forsmallerdomains,thiswillleadtosigni canterrorsand,inparticular,theforcescomputedonthebodywillsu erasigni cantblock-ageerror.Theerrorarisesfromtwosources.The rstistheextensive,algebraicallydecayingpotential owinducedbythebody(orequivalently,thesystemofforces).Thesecondisthatvorticitymayadvectordi usethroughthebound-ary.InouroriginalmethoddiscussedinSection2,theseerrorsareminimizedbyusingalargedomainwithahighlystretchedCartesianmeshnearthefar- eldboundaries(butretaininguniformgridspacingnearthebody),aswellasbyusinganapproximateconvectiveout owboundarycondi-tion.Unfortunately,stretchedmeshesareincompatible7withdirectFouriermethodsforsolutionofthePoissonequation.Inthissection,weshowhowtoposeanaccurate
7
IncertainspecialcircumstancesstretchedmeshescanbecombinedwithFourier-transformmethodsforellipticequations,e.g.[3].
一些ME专业提升的论文。
2138T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
far- eldboundaryconditionthatisalsocompatiblewiththefastmethoddescribedinthelastsection.
Westartbybrie yreviewingrelevantboundarycondi-tionsdesignedtoreduceoneorbothoftheaforementionederrors.Forerrorsassociatedwiththeslowlydecayingpotential ow,afewtechniqueshavebeenposedinthepasttopatchinthepotential owextendingfromthetruncatedcomputationalboundarytoin nity.RennichandLele[31]proposeatechniquefortwounboundeddirectionsandoneperiodicdirection.Theirmethodisbasedonmatchingthenumericalsolutiontoanalyticalrepresentationofthesolu-tiontoLaplaceequationoutsideacylindricalvolume.Theyreporta50%increasepertimestepforatypicallarge-scalecomputation,butthiscostismorethano setbytheabilitytousemuchmorecompactdomains.Wang[39]presentsasimilarapproachfortwo-dimensional owintheformofacorrectiontoatrialsolutionthatsatis esanincorrectDirichletboundarycondition.Vortexparticlemethodsinprincipleautomaticallyaccountfortheextensivepotential owgeneratedbythevorticity.However,inpracticeitisoftennecessarytoremoveparticlesthatadvecttolargedis-tancefromtheregionofinterest.Aninterestingtechniquetoreduceerrorsassociatedwithremovalofparticlesiscalledmerging,wherebythecirculationsofseveralvortexparticlesarecombinedintoasingleelementwhentheyaresu cientlyfarfromthebody[34,32].
Thesecondtypeoferrorassociatedwithvorticityadvectingordi usingthroughtheboundaryistypicallyhandledbyposingout owboundaryconditions.Forincompressible owtheseareusuallycalledconvectiveboundaryconditions,whereasincompressible owthetermnon-re ectingboundaryconditionisoftenused.Anothertechniqueistoselectivelyapplydampinginaregionnearthecomputationalboundary.Methodsthatemploythistechniquevaryfromadhocspeci cationoflayerwidth,dampingstrength,etc.,totechniquesthattheoreticallyspecifythedampingparametersaccordingtoamodel.Anexampleistheperfectlymatchedlayer[1]forlinearwaveequations(includinglinearizedcompressibleEulerequations[12])thatusesanalyticalsolutionstothegovern-ingequationstoderivedampingtermsthatpreventre ec-tionofwavesfromtheinterface.Anothertechniquecalledsuper-grid[6]isbasedonananalogywithturbulencemod-eling–thatthee ectoftheturbulencemodelistomodelscalestoo netoberesolvedinthecomputationalmesh,whereasthee ectoftheboundaryconditionistomodelscalestoolargetoberesolvedinthecomputationaldomain.Afulldiscussionofthesetechniquesisbeyondthescopeofthispaper;wereferthereadertosomerecentreferencesforfurtherdetails[33,15,25,5].Thesetechniquesaredesignedtoremovevorticityfromthedomainassmoothlyaspossibletherebypreventingundesirablere ec-tionsoraliasing.Mostdonotaccountforthevelocityinducedbyvorticitythathasalreadyexitedthedomain(anon-locale ect).
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说实用文档Computer Methods in Applied Mechanics and Engineering(6)在线全文阅读。
相关推荐: