6.典型复合反应
(1) 对行反应 如以正、逆反应均为一级反应为例,
A?k?1k1B
t = 0 cA,0 0 t = 1 cA cA,0 –cA t = ? cA,e cA,0 –cA,e
若以A的净消耗速率来表示该对行反应的反应速率时,则A的净消耗速率为同时进行的,并以A来表示正、逆反应速率之代数和。即
?上式的积分式为
dcA?k1cA?k?1(cA,0?cA)dt
lncA,0?cA,ecA?cA,e?(k1?k?1)t
对行反应的特点是经过足够长时间后,反应物与产物趋向各自的平衡浓度,于是存在
Ke?k1cA,0?cA,e?k?1cA,e
这一关系是在对行反应的计算中常使用。
(2) 平行反应 若以两个反应均为一级反应为例
k1
A
则 dcB/dt = k1cA
dcC/dt = k2cA
k2
B C
因B与C的生成均由A转化而来,所以A的消耗速率便是平行反应的反应速率,而且 -dcA/dt = dcB/dt + dcC/dt
得 -dcA/dt = (k1 + k2) cA
将上式积分得 ln(cA,0/cA) = (k1 + k2) t
平行反应的特点:当组成平行反应的每一反应之级数均相同时,则各个反应的产物浓度之比等于各个反应的速率常数之比,而与反应物的起始浓度及时间均无关。如例示的平行反应因组成其的两反应皆为一级反应,故有
cB/cC = k1/k2
第十二章 胶体化学 主要公式及其适用条件
1. 胶体系统及其特点
胶体:分散相粒子在某方向上的线度在1~100 nm 范围的高分散系统称为胶体。对于由金属及难溶于水的卤化物、硫化物或氢氧化物等在水中形成胶体称憎液溶胶(简称为胶体)。憎液溶胶的粒子均是由数目众多的分子构成,存在着很大的相界面,因此憎液溶胶具有高分散性、多相性以及热力学不稳定性的特点。
2. 胶体系统的动力学性质 (1)
布朗运动
体粒子由于受到分散介质分子的不平衡撞击而不断地作不规则地运动,称此运动为布朗运动。其平均位移x可按下列爱因斯坦-布朗位移公式计算
x?(RTt/3Lπr?)1/2
式中:t为时间,r为粒子半径,η为介质的粘度。 (2)
扩散、沉降及沉降平衡
扩散是指当有浓度梯度存在时,物质粒子(包括胶体粒子)因热运动而发生宏观上的定向位移之现象。 沉降是指胶体粒子因重力作用而发生下沉的现象。
沉降平衡:当胶体粒子的沉降速率与其扩散速率相等时,胶体粒子在介质的浓度随高度形成一定分布并且不随时间而变,这一状态称为胶体粒子处于沉降平衡。其数密度C与高度h的关系为
ln(C2/C1)??(Mg/RT)??1?(?0/?)?(h2?h1)?
式中ρ及ρ0分别为粒子及介质的密度,M为粒子的摩尔质量,g为重力加速度。此式适用于单级分散粒子在重力场中的沉降平衡。
3. 光学性质
当将点光源发出的一束可见光照射到胶体系统时,在垂直于入射光的方向上可以观察到一个发亮的光锥,此现象称为丁达尔现象。丁达尔现象产生的原因是胶体粒子大小,小于可见光的波长,而发生光的散射之结果。散射光的强度I可由下面瑞利公式计算:
2?9π2V2C?n2?n0I?1?cos2??I0 ?2422??2?l?n?2n0?2
式中:I0及λ表示入射光的强度与波长;n及n0分别为分散相及分散介质的折射率;α为散射角,为观测方向与入射光之间的夹角;V为单个分散相粒子的体积;C为分散相的数密度;l为观测者与散射中心的距离。此式适用粒子尺寸小于入射光波长,粒子堪称点光源,而且不导电,还有不考虑粒子的散射光互相不发生干涉。 4. 电学性质
胶体是热力学不稳定系统,其所以能长期存在的重要因素就是胶体粒子本身带电的结果。证明胶体粒子带电的有:电泳、电渗、流动电势和沉降电势等电动现象。电泳与电渗是指在外电场作用下,胶体中分散相与分散介质发生相对运动;流动电势与沉降电势则是当外力场作用于胶体上时,使得分散相与分散介质发生相对移动而产生电势差。产生上述电动现象的原因是因为胶体粒子具双电层结构的缘故。 5. 斯特恩双电层模型
有关胶粒带电的双层模型中以斯特恩双电层模型使用较广。其双电层结构可用下面模型(图12-1)表示。
图中:?0热力学电势:表示固体表面与溶液本体的电势差。??斯特恩电势:斯特恩面与容液本体的电势差。ζ电势(流
动电势):当分散相与分散介质发生相对移动时,滑动面与溶液本体的电势差。从电泳速率或电渗速率计算电势的公式如下:
??v??E
-1式中:ε为介质的介电常数,ε0为真空介电常数;v为电泳速率,单位为m?s介质的粘度,单位为Pa · s。 6. 胶团结构
;E为电势梯度,单位为V · m-1;η为
根据吸附与斯特恩双电层结构可知,溶胶的胶团结构分为胶核、胶粒及胶团三个层次。以AgCl溶胶为例,当用KCl与AgNO3制备AgCl溶胶时,若AgNO3是略微过量的,则若干个AgCl粒子组成的固体微粒优先吸附与其自身有相同元素的离子(Ag+)而形成胶核。再按双电层结构分别写出胶粒与胶团部分,即
胶粒???????????????x+???+-?AgCl?mnAg??n-x?NO3??xNO-??3?????????胶核???????????????????胶团
胶粒带正电荷。
但若制备AgCl时是采用KCl稍微过量,则其胶团结构为胶粒带负电荷。 7. 溶胶的稳定与聚沉
(1)溶胶稳定的原因有三:胶体粒子带电、溶剂化作用以及布朗运动。
胶粒?????????????x+???+??AgCl?mnCl??n-x?K??xK????????????胶核?????????????????胶团
(2)聚沉:是指溶胶中胶粒互相聚结变成大颗粒,直到发生沉淀的现象。导致溶胶聚沉的因素很多,但是电解质加入时溶胶发生聚沉的作用是显著的,为比较不同电解质对溶胶的聚沉作用大小而引进聚沉值,聚沉值是指令溶胶发生明显的聚沉所需之电解质最小浓度。聚沉值的倒数称为聚沉能力。
应指出:起聚沉作用的主要是与胶粒带相反电荷的离子(即反离子),反离子价数越高则聚沉值越小。离子价数及个数均相同的不同反离子,其聚沉能力亦不相同,如
+++ H+>Cs+>Rb+>NH+4>K>Na>Li-F->Cl->Br->NO3>I->SCN->OH-
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库物理化学主要公式及使用条件1(4)在线全文阅读。
相关推荐: