Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
8(a)(b)
(c)(d)
Fig.contours.14.(a),(c)RGBimages(192×156and321statistical(b)polygonalSegmentationtechniqueresults×398pixels)andinitialadaptedobtainedwiththeproposednonparametricseconds),onthehuecomponentinHSVrepresentationto3regionswiththe3-stagestrategy:time:11.(d)4seconds).
onthesaturationcomponentinHSVrepresentation(computation(computationtime:5.1[3]C.IEEEXuTrans.andJ.ImageL.Prince,Processing“Snakes,,vol.shapes,7,pp.359–369,andgradient1998.
vector ow,”
[4]G.stochasticStorvik,“ABayesianapproachMachineIntell.sampling,vol.and16,simulatedno.10,pp.annealing,”todynamic976–986,IEEE1994.
Trans.contoursPatternthrough
Anal.[5]A.deformableK.Jain,Y.Zhong,kshmanan,“Objectmatchingvol.18,pp.template,”268–278,ing
,[6]J.sequencesDiasandImaging,vol.ofJ.15,echocardiographicLeit ao,“Wallpositionpp.25–38,1996.images,”andthicknessIEEETrans.estimationonMedicalfrom
[7]M.aryFigueiredo,Visionestimation,”J.Leit andPatterninRecognition,IEEEao,andComputerA.K.Jain,PuertoSociety“AdaptiveRico,Conferenceb-splinesJune1997,pp.onandComputer
bound-724–729.[8]AdeformableKlein,FLee,468–482,1997.
splineandmodels,”AAmini,IEEE“QuantitativeTrans.Med.coronaryImag.,vol.angiography16,no.4,with
pp.[9]O.randomGermainandPh.R´efr´egier,“Optimalsnake-basedvol.21,luminanceno.22,pp.target1845–1847,onaspatially1996.disjointbackground,”segmentationOpt.Lett.ofa
,[10]C.basedChesnaud,Ph.R´efr´egier,andV.Boulet,“StatisticalTrans.segmentationPatternAnal.adaptedandMachinetodifferentIntell.,physicalvol.21,pp.noise1145–1157,models,”regionsnake-IEEE
1999.[11]S.growing,C.ZhuandA.Yuille,“Regioncompetition:unifyingsnakes,Trans.1996.
PatternandBayes/MDLAnal.andMachineformultibandIntell.,imagevol.18,segmentation,”region
no.9,pp.884–900,IEEE[12]N.toParagiosandR.Deriche,“Geodesicactiveregions:anewofdealPartialVisualwithCommunicationframepartitionandproblemsImageRepresentation,incomputervision,”paradigm
JournalandComputerDifferentialGraphics,Equations,vol.13,inImageno.1/2,Processing,pp.249–268,ComputerSpecialIssue2002.
Visionon[13]J.Scienti c,Rissanen,Singapore,plexityinStatisticalInquiry,World
[14]M.resentationFigueiredo,length2000.
criterion,”andJ.estimationLeit ao,andA.K.Jain,“ingImageB-splinesProcessingand,avol.minimum9,pp.1075–1087,description
[15]O.polygonalRuchandvol.26,no.snakePh.R´efr´egier,“Minimal-complexitysegmentationwitha
13,pp.adapted977–979,todifferent2001.opticalnoisemodels,”Opt.Lett.,[16]P.noiseMartin,Ph.R´efr´egier,F.Goudail,andF.Gu´erault,“In uenceofPatternmodelAnal.onandlevelMachinesetactiveIntell.contourthe
,vol.26,segmentation,”pp.799–803,2004.
IEEETrans.[17]N.segmentation:ParagiosandR.Deriche,“Coupledgeodesicactiveregionsforimage
Vision.June2000,alevelpp.set224–240,approach,”Dublin,inIreland.
EuropeanConf.incomputerIEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????
[18]N.methodsParagiosforandsupervisedR.Deriche,texture“Geodesicsegmentation,”activeInt.regionsJ.ofComput.andlevelVis.set
,[19]vol.J.metricKim,46,no.J.W.3,pp.223,2002.
curveevolution,”methodsFisher,forA.Yezzi,M.Cetin,andA.S.Willsky,“Nonpara-inimageIEEEsegmentationusinginformationtheoryand[20]2002,A.gradientHerbulot,vol.3,pp.Int.Conf.onImageProcessing.SeptemberS.797–800,Jehan-Besson,Rochester,M.Barlaud,N.Y.
Conf.onforAcoustics,imagesegmentationSpeech,andusingSignalinformationandG.Processingtheory,”Aubert,“Shape
.inIEEEInt.[21]pp.May2004,vol.3,E.[22]AnnalsParzen,21–24,Montreal,Canada.
S.Mathematical“Onestimationofaprobabilitydensityfunctionandmode,”
ofP.UniversityimageAwate,Statistics,vol.33,pp.1065–1076,1962.
neighborhoodsT.Tasdizen,andR.T.Whitaker,“Nonparametricstatistics
ofUtahSchoolforofunsupervisedComputing,texturesegmentation,”in[23]008T.M.,2005.
TechnicalReportUUCS-05-Coverand[24]interscience,A.Kullback-LeiblerElMatouatNewJ.A.Thomas,ElementsofInformationTheory,Wiley-andYork,InformationM.Hallin,1991.
,Orderpp.291–299,selection,SpringerstochasticVerlag,complexityInand
[25]ofA.E. niteDervieuxJ.Hannan,memoryand1996.
F.icalMethodselementmethod,”Thomasset,inFluidDynamicsinSeventh“Multi uid,W.Internationalincompressible owsbya
ReynoldsConferenceonNumer-[26]Eds.,S.dependentOsher1981,andvol.speed:J.141AlgorithmsA.ofSethian,LectureNotesinPhysicsand,pp.R.W.158–163.
MacCormack,based“FrontsonHamilton-Jacobipropagatingwithformulation,”curvature
[27]J.J.ofComputationalPhysics,vol.79,pp.12–49,1988.
Hamilton-JacobiA.Sethian,[28]GeometryV,vol.31,equations“Numericalpp.131–161,andalgorithmsconservationforlaws,”propagatingJ.ofDifferentialinterfaces:
[29]J..N.ofCaselles,Comput.R.Vis.Kimmel,,vol.22,andno.G.Sapiro,1990.
“Geodesicactivecontours,”Int.
forParagiosthedetectionandR.andDeriche,tracking“Geodesic1,pp.61–79,1997.
ofactivecontoursandlevelsets
[30]Anal.T.F.andChanMachineandIntell.,vol.22,movingno.3,objects,”pp.266–280,IEEE2000.
Trans.Pattern[31]Trans.S.ImageProcessingL.A.Vese,,vol.“Active10,no.22,contourspp.266–277,withoutFeb.edges,”2001.IEEE
regionsJehan-Besson,andvideodrivenM.Barlaud,andG.Aubert,“Dream2s:Deformable
segmentation,”byaneulerianaccurateminimizationmethodforimage[32]2003.
Int.J.ofComput.Vis.,vol.53,pp.45–70,F.toGallandmulti-regionandPh.objectsR´efr´withegier,different“Informationnoisemodels,”theory-basedOpticsnakeadapted
[33]29,H.no.14,pp.1611–1614,2004.
Letters,vol.levelK.setZhao,approachT.F.toChan,multiphaseB.Merriman,motion,”p.S.Osher,Phys.“A,variational
[34]179–195,L.segmentationA.Vese1996.
vol.127,pp.andusingT.Chan,the“Amultiphaselevelsetframeworkforimage
[35]Vis.D.L.,vol.MumfordandShahmodel,”Int.J.ofComput.Chopp,50,“Computingno.3,pp.271–293,minimal2002.
[36]Jour.F.contrastGoudail,ofCompt.Ph.R´Phys.efr´egier,,vol.and106,G.pp.surfacesDelyon,77–91,via“Bhattacharyya1993.levelsetcurvature ow,”
distanceasa
[37]Opt.J.Soc.parameterforstatisticalprocessingofnoisyopticalimages,”serW.Goodman,Am.A,Statisticalvol.21,no.Properties7,pp.1231–1240,oflaserSpeckle2004.
Patterns,chapter
[38](TopicsSpeckleA.K.Jain,inAppliedandRelatedPhenomena,pp.9–75,Springer-VerlagFundamentalsPhysicsVol.9),Heidelberg,1975.
[39]informationS.HandbookJ.SangwineandsystemandR.sciencesofdigitalimageprocessing,PrenticeHall
E.serie,NewJersey,1989.
[40]spaces,D.pp.,chapter76–82,RepresentationsN.Horne,ChapmanandHall,ofcolourTheColourimagesImageindifferentProcessing
coloursegmentedMartin,algorithmsnaturalC.Fowlkes,imagesD.andTal,itsandapplicationJ.London,Malik,“A1998.
databaseofhuman
ComputerVisionandmeasuring,July2001,ecologicalvol.2,pp.statistics,”toevaluating416–423.
inProc.8thsegmentationInt’lConf.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam(8)在线全文阅读。
相关推荐: