Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
6
)
%(PMNABHATTACHARYYA DISTANCE
Fig.results7.ANMPastechniqueobtainedGammawiththewithafunction3-stagetheparametricoftheBhattacharyyadistanceBforsegmentationstrategyonstatisticalapproachandtheproposedrealizationsandNonparametricandPoissonstatisticalthesegmentationGLPDs.Eachapproach.isANMPtheimageofFig.2awithGaussian,(b)performedhasbeenParametricwithestimatedon20noisestatistical
thelevelapproach.
setsnake.(a)(a)(b)(c)(d)
Fig.line)8.(a)Syntheticimages(115×83pixels)obtainedandproposedwithGammaGaussian(second(b)line)andnoisesGammawith(c)Bperturbed=0.29.SegmentationwithGaussianresults( rstusedandapproachtheinitialwithcontourthe3is-stagetheonestrategyofFig.(d).models2b.
TheforlevelthesetGLPDssnakehasandbeentheFirst,letusconsiderthecaseofgraylevelsintheimagesthatthatarepurposedistributedoneconsidersaccordingdifferenttotheexponentialnoisyversionsfamily.ofFortheimagebutions.ofTheFig.2aevolutionwithGaussian,oftheANMPGammaasorafunctionPoissonofdistri-theBhattacharyyadistanceBisshowninFig.7.20realizationsofdifferentthescenevalueswereofgeneratedB.Theobtainedforeachimagesnoisehavemodelbeenandseg-formentedeitherwiththeparametricstatisticalapproachorwiththeofthe3-stageproposedstrategy.approachFig.7areillustratessimilarthatforthethethreeperformancestypesofpdf.nonparametricMoreoverstatisticaltheparametricapproachstatisticalofthispaperapproachleadtoandsimilarthevaluesoftheANMPwhenB≥0.3.IfB<0.3theproposedapproachapproachprovidesthatalsoworseleadstoresultsdegradedthantheperformance.
parametricstatisticalClearly,ournonparametricmethoddoesnotrelyonagivenmodel.thatcanThisproduceisaverymajorbadadvantageresultsiftheoverparametricparametricmodelmethodsdoesnoteffectcorrespondandcomparestothebothnoiseapproachinthedata.onaFig.synthetic8illustratesimagewiththisdifferentnoisedistributions.
paperInconclusion,withthe3-stagethenonparametricstrategyleadsapproachtosatisfactoryproposedresultinthisincomparisontotheonesobtainedwithaparametricmodeladaptedrobustness.
tothegraylevel uctuationsbutwithastrongerIEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,
????
E.Realimages
amplesWeproposeobtainedtowithshowtheinproposedthissubsectionnonparametricsegmentationstatisticalex-techniqueandthe3-stagestrategyondifferenttypesofrealimages.IntelXeonThe2.segmentations8GHZ(Linuxhave2.4,beengcc2performed.96)with900withMoaPCofRAMandthecomputationaltimesareprovidedinthecaptionsofthe gures.
tion.WeIn rstFig.show9ctheresults nalobtainedcontourobtainedwiththelevelonasetrealimplementa-SARimagecorruptedwithspecklenoiseisrepresented.Thesegmentationresultnoise[37]onaislasershownilluminatedinFig.9f.imageInFig.perturbed10,onewithcanspeckleseethesegmentationFig.10atheresultresultonobtainedavideowhentexturedthetechniqueimage.Weisshowappliedinontheimage.Onecanseeinthatcasethatthetechniqueisinef cientnonhomogenoussincetheregions.presenceHowever,ofshadowsifoneintheconsidersimagetheleadsnewtoimagefde nedbyf(x,y)=|FVFVandFHaretheRoberts s lters(x,y)[38]|2+|FHde ned s(x,withy)|2wherea3×3pixelneighborhoodsand istheconvolutionoperator,oneobtainsanimagewithtworegionsmorehomogenous.Indeed,continuousthevariationgradientoperatorofthegrayallowslevels.onetoThesuppresssegmentationlinearresultisshownonthisinpreprocessedFig.10dandimageonewithcantheseeproposedinFig.technique10bandFig.10cthatparametricstatisticalapproachesdonotleadtosatisfactoryacquiredwithsegmentations.aCCDcameraAnalogousisshownresultinFig.ona11RGBwhereimagetheconsideredpreprocessingnowsimplyconsistsinextractingthesegmentationhuecomponentexampleintheobtainedHSVrepresentationonthehuecomponent[39].AnotherofaRGBimageisshowninFig.12.
WeshowinFig.13segmentationresultsobtainedwithapolygonalcomponentsnakeintheadaptedHSVrepresentationtotworegions.areResultsshownoninFig.theHue13bandonaFig.gray13f.levelInimageFig.13d,whichthesegmentationhasbeenpreprocessedhasbeenobtainedinordertoobtainanewimagegde nedbyg(x,y)=s(x,y) s(x+1,y+1)inwhichthedifferentregionsaremorehomogenous.WeshowinFig.14segmentationresultsobtainedwithaSegmentationpolygonalsnakeresultsadaptedhaverespectivelyto3regionsbeenonobtainedRGBimages.ontheHueonthecomponentsaturationincomponenttheHSVrepresentationintheHSVrepresentationinFig.14bandinFig.14d.TheimageinFig.14cisextractedfromtheBerkeleyDatasetofnaturalimages[40].
Theseresultsshowthattheproposedapproachallowsonetodealwithverydifferenttypesofimages.
IV.CONCLUSION
Wehaveproposedanonparametricstatisticalsnakebasedonthethegrayminimizationleveldistributionsoftheofstochastictheobjectcomplexityandofthebackgroundandwhereareapproximatedbystepfunctionswhoseparametersarees-timatedtominimizeduringathecriterionsegmentationwithoutprocess.freeparameterThisapproachtobetuned
leads
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam(6)在线全文阅读。
相关推荐: