Abstract — We propose a nonparametric statistical snake technique that is based on the minimization of the stochastic complexity (minimum description length principle). The probability distributions of the gray levels in the different regions of the image
IEEETRANSACTIONSONIMAGEPROCESSING,VOL.??.NO.??,????1
Nonparametricstatisticalsnakebasedonthe
MinimumStochasticComplexity
PascalMARTIN,PhilippeREFREGIER,Fr´ed´ericGALLANDandFr´ed´ericGUERAULT
EDICS:SEGM,NOIS
niqueAbstractplexitythat—isWebasedproposeontheanonparametricminimizationofstatisticalthestochasticsnaketech-com-distributions(minimumdescriptionlengthprinciple).Theprobability
imagearearedescribedofthegraywithlevelsinthedifferentregionsoftheaestimated.Thesegmentationstepfunctionsisthusobtainedwithparametersbyminimizingthatthecriteriontypesuser.ef ciencyofimagesWethatillustratedoesnotincludeanyparametertobetunedbywithleveltherobustnesssetandofthistechniqueonvariousparametricofstatisticalthisapproachtechniques.
isalsopolygonalanalyzedcontourincomparisonmodels.withTheset,Indexsnakes,Termsminimum—Imagedescriptionsegmentation,lengthstochasticprinciple.
complexity,levelA
I.INTRODUCTION
Nimportantgoalofcomputationalvisionandimageobjectsprocessingfromvariousistotypesautomaticallyofimages.recoverOverthetheyears,shapemanyofapproacheshavebeendevelopedtoreachthisgoal.Inthispaper,contourswe(snakes).
focusonthesegmentationofobjectsusingactiveafunctionThe rstinsnakesorder[1]tomoveweredriventhemtowardsbythedesiredminimizationfeatures,ofusuallyedges.Theseapproachesareedgebasedinthesensethatarewelltheinformationadaptedtoausedcertainisclassstrictlyofproblems,alongtheboundary.buttheycanTheyfailinthepresenceofstrongnoisealthoughseveralimprovementsandlimitationsreformulations[2][3](andhavereferencesbeenproposedtherein).toAnotherovercomestrategytheseconsistsinconsideringnotonlytheedges,butalsotheinnerand[6],[7],theouter[8].
regionsde nedbytheactivecontour[4],[5],toInminimizetheregion-basedacriterionapproaches,thatisthethesumcontouroftwoistermsdeformed[9],[10],[11],[12]:theexternalenergy,thatisbasedonthegraylevelsenergy,ofthattheallowsimageandoneontoaregularizestatisticalthemodel,contour.andtheIthasinternalbeenshownleadstothatasatisfyingtheminimizationtradeoffofbetweenthestochasticthesetwocomplexityenergies[13]forvarioustypesofcontourmodels(spline[14],polygonal[15],levelpropertiesset[16]).intheThecontextresultingofstatisticalsnakesestimationpresentcleartheoryoptimalifthe
processingPh.R´efr´ed’Ing´group,gier FresnelandFr´eInstituted´ericGallandUMRCNRSTICarewiththe6133,PhysicsEcoleandG´eImageMarseilleenieursdeMarseille,DomaineuniversitairedeStJ´en´eralisteeric.galland@fresnel.fr.Cedex20,France.r ome,13397Sacoman,F.Gu´eE-mail:philippe.refregier@fresnel.fr,fred-Martiniswith13016theMarseilleraultiswithSimagD´eveloppement,2all´eeboth.E-mail:France.pascal.martin@fresnel.fr.
E-mail:frederic.guerault@simag.fr.P.apriorigraylevelprobabilitydistribution(GLPD)modeliswelladaptedtothedata.
TheGLPDmodelsthatbelongtotheexponentialfam-ily[10]allowonetodealwithmanyapplications(radarimages,modelsmaylowphotonfailtoprovide ux,...).aNevertheless,fairdescriptionsuchofparametrictheGLPDinsomepracticalcasesanddifferentapproacheswerede-velopedproposedtotoovercomeestimatethesetheGLPDlimitations.ontheInwhole[17],imagetheauthorswithacorrespondsGaussianmixturetoaregion.suchAlthoughthateachthiselementapproachofistheinterestingmixtureandprovidesgoodresultsondifferenttypesofimages,wewillregion.seeInthat[18],itisasupervisedpreferabletomethodestimateisproposedtheGLPDforintextureeachsegmentationtasks.Thisapproachrequirestrainingwhichisanpaper.importantIn[19],difference[20],thewithauthorsthetechniqueproposedproposedanonparametricinthisstatisticalwithParzenapproachwindowsbased[21].onAthelevelestimationsetimplementationoftheGLPDinwhichthevarianceσPoftheGaussiankernelisautomaticallyestimatedapproacheshas[19],also[20],been[22]developedthecriterion[22].toHowever,optimizeincontainstheseatuningparameterinordertobalancethecontributionoftheinternalandoftheexternalenergy.
isWebasedproposeontheinminimizationthispaperaofsegmentationacriterionwithouttechniquetuningthatparameterandthatisnotdedicatedtoaparticularprobabilitydistributionandofthebackgroundfamily.ForarethatdescribedpurposethewithGLPDstepfunctionsoftheobjectwithparametershand.Thisisandannumberimportantofdifferencestepsestimatedtothepreviousfromthecitedimagenon-inparametricstatisticalsnaketechniquesandtoourknowledge,thisacriterionisthe rstwithoutdemonstrationtuningparameterofsnakeandsegmentationthatisnotdedicatedbasedontoaparticularGLPD.Itwillbestudiedwhentheresultsareequivalentmodeladaptedtothetoonesthe uctuationsobtainedwhenpresentaparametricintheimagestatisticalisused.Furthemore,ofthetechniqueweshallproposedalsodemonstrateinthispaper.
thestrongerrobustnessinThesectiongeneralII.ExperimentalmodelofthestochasticresultsarecomplexityprovidedinissectionpresentedIIIonsyntheticandrealimages.
II.MINIMUMSTOCHASTICCOMPLEXITYAPPROACHInthissection,thestochasticcomplexitythatcorrespondstoimagethecriterionwithsnakethatmodelswillbeisminimizedde ned.
inordertosegmentthe
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.. NO., 1 Nonparam在线全文阅读。
相关推荐: