同理可得yF?∴kEF??
?3?613?43,xF?, 331.-----------------------------------------------------------------------------12分 411?ax?a?. xx21.【解析】(1)依题意,函数f(x)的定义域为(0,??),对f(x)求导,得f?(x)?①若a?0,对一切x?0有f?(x)?0,函数f(x)的单调递增区间是(0,??). ②若a?0,当x?(0,)时,f?(x)?0;当x?(,??)时,f?(x)?0.
所以函数f(x)的单调递增区间是(0,),单调递减区间是(,??) -----------------4分 (2)设切线l2的方程为y?k2x,切点为(x2,y2),则y2?ex2,
1a1a1a1ak2?g?(x2)?ex2?y2,所以x2?1,y2?e,则k2?ex2?e. x2111?,l1的方程为y?k1x?x.
ek2e由题意知,切线l1的斜率为k1?设l1与曲线y?f(x)的切点为(x1,y1),则k1?f?(x1)?所以y1?11y?a??1, x1ex1x111?1?ax1,a??. ex1e又因为y1?lnx1?a(x1?1),消去y1和a后,整理得lnx1?1?令m(x)?lnx?1?11??0.------------6分 x1e1111x?1??0,则m'(x)??2?2, xexxxm(x)在(0,1)上单调递减,在(1,??)上单调递增.
1e111?0,m(1)???0,所以x1?(,1), eee若x1?(0,1),因为m()??2?e?e?1e2?1111而a??在x1?(,1)上单调递减,所以. ?a?eeex1e若x1?(1,??),因为m(x)在(1,??)上单调递增,且m(e)?0,则x1?e,
e?1e2?111所以a???0(舍去).综上可知,. -----------------------8分 ?a?eex1e1?a. x?111x?a?x?1??a?2?a?0, ①当a?2时,因为ex?x?1,所以h?(x)?e?x?1x?1x(3)h(x)?f(x?1)?g(x)?ln(x?1)?ax?e,h?(x)?e?xh(x)在?0,???上递增,h(x)?h(0)?1恒成立,符合题意.
11
1(x?1)2ex?1??0,所以h?(x)在?0,???上递增,且②当a?2时,因为h??(x)?e?22(x?1)(x?1)h?(0)?2?a?0,则存在x0?(0,??),使得h?(0)?0.
x所以h(x)在(0,x0)上递减,在(x0,??)上递增,又h(x0)?h(0)?1,所以h(x)?1不恒成立,不合题意.
综合①②可知,所求实数a的取值范围是???,2. ----------------------------12分
22.解:
?(Ⅰ)连接BD,则?AGD??ABD,?ABD??DAB?90, ??因为?C??CAB?90,所以?C??AGD,?C??DGE?180,
?因此C,E,G,D四点共圆; (Ⅱ)设EG?x,GA?3x,
---------------------------------------------------------5分
2由切割线定理EG?EA?EB,则EB?2x,又F为EB三等分,所以EF?2x4x,FB?, 332又FE?FC?FG?FD,FG?FD?FB, 所以FC?8x,CE?2x,即CE?EB.----10分 323.解:(Ⅰ)设P(x,y),则根据题设画图知
21|AB|cos(???)??2cos?,y?|AB|sin(???)?sin?, 33??x??2cos?曲线C的参数方程是?(?为参数,且????); ????(5分)
2y?sin??x?(Ⅱ)D(0,?1),设P(?2cos?,sin?),则
116|PD|?(?2cos?)2?(sin??1)2??3sin2??2sin??5??3(sin??)2?,
33因为
?2????,所以sin??(0,1),2?|PD|?4343,故d的取值范围是(2,]?(10分) 3324. 解:(Ⅰ)
14114??(?)(1?a?1?b) 1?a1?b41?a1?b11?b4?4a11?b4?4a9(5??)?(5?2?)?, 41?a1?b41?a1?b41?b4?4a15?等号成立条件为,而a?b?2,所以a?,b?, 1?a1?b3315149?因此当a?,b?时,取最小值;
331?a1?b4?(Ⅱ)由均值不等式得
???(5分)
a2b2?a2?2a2b,a2b2?b2?2b2a,a2?b2?2ab,
222222三式相加得 2ab?2a?2b?2ab?2ab?2ab=2ab(a?b?1),
而2ab?2ab?2ab=2ab(a?b?1),所以ab?a?b?ab(a?b?1).?(10分)
222222
12
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库西北师大附中2015届高三第五次诊断考试数学(理科A卷)-学生版(3)在线全文阅读。
相关推荐: