例1:用科学记数法记出下列各数:
(1)696 000; (2)1 000 000; (3)58 000; (4)―7 800 000。
解:(1)原式=6.963105;(2) 原式=106;(3) 原式=5.83104;(4) 原式=―7.83106。
5.思考:
用科学记数法表示一个数时,10的指数与原数的数位位数有什么关系?和同学讨论一下,再举几个数验证你的猜想是否正确。 6.课堂练习:
有理数的混合运算(1) 一、复习引入:
1.计算:
(1)(―2)+(―3); (2)73(―12); (3);―+; (4)17―(―32); (5)―252;(6)(―2)3; (7) ―23; (8) 021; (9) (―4)2; (10) ―32; (11) (―2)4; (12) ―100―27; (13) (―1)101; (14) 1――; (15) 13(―2); (16)―7+3―6; (17) (―3)3(―8)325。 2.说一说我们学过的有理数的运算律:
加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc); 乘法分配律:a(b+c)=ab+ac?
二、讲授新课:
1.观察:
下面的算式里有哪几种运算? 3+50÷223(?1613781213121)-1。 5这个算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
2.有理数混合运算的运算顺序规定如下:
①先算乘方,再算乘除,最后算加减; ②同级运算,按照从左至右的顺序进行;
③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
②可以应用运算律,适当改变运算顺序,使运算简便。
3.例题:
这里要注意三点:
①小括号先算;
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法; ③同级运算,按从左往右的顺序进行,这一点十分重要。
有理数的混合运算(2) 一、复习引入:
1.叙述有理数的运算顺序。? 2.计算:
(1) ―2.53(―4.8)3(0.09)÷(―0.27); (2)-234÷(-1) (3) (―3)3(―5)2; (4)[(―3)3(―5)]2; (5) (―3)2―(―6); (6) (―4332)―(―433)2。
二、讲授新课:
1.例题:
有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键,能用简便方法的就用简便方法、能够口算的就口算,下面再看几个例子。
例1:计算:3+50÷223(-151)-1 5解:原式=3+50÷43(?)-1222222222222(先算乘方)
1?=3?50?1??22222222222222(化除为乘) ??????12
4?5?=3?50?1151??1?3??1??4522222(先定符号,再算绝对值)
2.课堂练习:
三、课堂小结:
在有理数混合运算中,先算乘方,再算乘除,乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写成整数与真分数和的形式。 四、课堂作业:
第21:近似数和有效数字
近似数和有效数字。
教学目的和要求:
1.使学生初步理解近似数和有效数字的概念,并由给出的近似数,说出它精确到哪一位,它有几个有效数字。
2.给一个数,能熟练地按要求四舍五入取近似数。
教学重点和难点:
重点:近似数、精确度,有效数字等概念和给一个数,能按照精确到哪一位或保留几个有效数字的要求,四舍五入取近似数。
难点:由给出的近似数求其精确度及有效数字的个数、保留有效数字取近似值。
教学工具和方法:
工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.问题:
①统计班上喜欢吃肯德鸡的同学? ②量一量课本的宽度。
了解准确数和近似数的概念,
2.从学生原有认知结构提出问题:
在小学里我们计算圆的面积S=πR2,π一般取多少?(3.14)这是一个精确的数吗?小数位数太多,不便于计算,常常保留两位小数,由“四舍五入”取π≈3.14,这就是“近似数”,小学里在小数计算中经常把最后答案取近似数。
3.完成练习:
①将3.062保留一位小数得___;②将7.448保留整数得____;③将15.267保留两位小数得___。
二、讲授新课:
1.概念: ①精确度: 在实际问题中,我们经常要用近似数.使用近似数就有一个近似程度的问题,也是就精确度的问题。
我们都知道,??3.14159222。我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为2,就叫做精确到个位; 如果结果取1位小数,则应为1.7,就叫做精确到十分位(或叫精确到0.1);
如果结果取2位小数,则应为1.67,就叫做精确到百分位(或叫精确到0.01);??。
概括:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确
到哪一位。
②有效数字:
这时,从左边第一个不是0的数起,到精确到的数位止,所有的数
字都叫做这个数的有效数字(significant digits)。
象上面我们取1.667为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字1、6、6、7。
2.例题:
例1:下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字? (1)132.4; (2)0.0572; (3)2.40万
解:(1)132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;
(2)0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2; (3)2.40万精确到百位,共有3个有效数字2、4、0。
注意:由于2.40万的单位是万,所以不能说它精确到百分位.。
例2:用四舍五入法,按括号中的要求把下列各数取近似数。
(1)0.34082(精确到千分位); (2)64.8 (精确到个位); (3)1.504 (精确到0.01); (4)0.0692 (保留2个有效数字); (5)30542 (保留3个有效数字)。 解:(1)0.34082 ≈ 0.341。
(2)64.8 ≈ 65。 (3)1.504 ≈ 1.50。 (4)0.0692 ≈ 0.069。 (5)30542≈ 3.053104。
注意:(1)例2的(3)中,由四舍五入得来的1.50与1.5的精确度不同,不能随便把后面的0去掉;
(2)例2的(5)中,如果把结果写成30500,就看不出哪些是保留的有效数字,所以我们用科学记数法,把结果写成3.053104。
(3)有一些量,我们或者很难测出它的准确值,或者没有必要算得它的准确值,这时通过粗略的估算就能得到所要的近似数,有时近似数也并不总是按“四台五入”法得到的。
例如,某地遭遇水灾,约有10万人的生活受到影响。政府拟从外地调运一批粮食救灾,需估计每天要调运的粮食数。如果按一个人平均一天需要0.5千克粮食算,那么可以估计出每天要调运5万千克的粮食。
又如某校初一年级共有l12名同学,想租用45座的客车外出秋游。因为112÷45=2.488?,这里就不能用四合五入法,而要用“进一法”来估计应该租用客车的辆数,即应租3辆。
3.课堂练习: 三、课堂小结:
①正确理解和掌握近似数、准确数、精确度和有效数字等概念;
②要学会给出一个近似数,能准确地确定它精确到哪一位,或它有哪几个有效数字;准确、迅速、熟练地按照要求求出一个数的近似数;
③对例题中提到的注意事项应引起重视。
四、课堂作业:
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库初一上册数学第一章有理数教案(5)在线全文阅读。
相关推荐: