77范文网 - 专业文章范例文档资料分享平台

我国科技金融对科技创新的影响研究——基于面板模型的分析(3)

来源:网络收集 时间:2021-05-12 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息


  三、我国科技金融对区域创新的影响实证分析


  (一)指标的选取和数据说明


  1.科技金融指标的选取


  根据投资主体的不同,可以将科技金融分为市场科技金融和公共科技金融。在市场科技金融方面,由上文的分析可知,资本市场以及风险资本是主要的科技金融服务的提供主体。为体现资本市场对科技创新的支持,笔者采用科技型上市公司占比(LTCR)这一相对数来表示资本市场所提供的科技金融服务,在文章中采用相对数的原因为:科技型上市公司本身就是科技创新的载体,其体现科技金融的同时也体现着科技创新水平,而采用相对数更能体现出资本市场对科技型企业支持的强度,体现的是科技金融部分。科技型上市公司占比=科技型上市公司的数量/所有的科技型公司数量。本文借鉴李希义等(2008)[19]的科技型上市企业的界定标准对所有的上海和深圳证券交易中的上市公司进行鉴定,从而得到各地区各年份的科技型上市公司数量。另外,理论上讲应该使用风险资本的投资额来表示风险资本提供的科技金融,由于数据的可得性,本文采用风险投资机构数量(VCI)来反映风险投资情况。


  公共科技金融主要的提供主体为政府,由于在科技创新研发的初期,大多数科技创新的外部性强,有很强的公益性,这个阶段,政府是主要的投资主体,我们运用政府在科技研发方面投入的资金占政府财政支出的比例来表示,即政府科技投入经费比(GSIR)。


  2.区域创新的代理变量选取


  由上文可知,在不同的创新阶段,科技金融对创新的传导机制,作用效果不同,因此在选择区域创新的代理变量时,我们仍然在不同的创新阶段选择不同的创新变量。第一阶段,新技术的孵化阶段,选择不同省份一年内的授权专利数为区域创新在该阶段的代理变量;第二阶段,科技成果转化阶段,由于该阶段的主要特征是将新的技术应用于新的产品,主要衡量指标是技术市场成交额比和新产品收入比来体现;第三阶段,高新技术产业化阶段,衡量指标是高新技术产业中内资企业收入。


  3.数据选取


  由于我国地域辽阔,区域间科技创新水平不均衡,如图1所示,各区域中东部的科技创新水平显著高于其他区域的科技创新水平。为了对各地区进行对比,本研究根据国家统计局口径将我国分为东、中、西部3个区域,将全国、东部、西部、中部四个面板数据模型进行比较分析。东、中、西部的划分根据我国国家统计局的区域划分标准进行划分,由于西藏,新疆的数据不全,因此将西部的西藏、新疆省剔除。本文的研究跨度为2003年到2013年,数据来源于2003—2014年的《中国统计年鉴》《中国科技统计年鉴》《高新技术产业统计年鉴》和《证券与期货统计年鉴》,国泰安数据库以及EPS数据库。


  新指标的面板数据均值(0-1化处理)注:由于图中各个指标的单位不同,要想将这些指标一起进行区域性的比较,本文将各个区域的科技创新指标的均值进行的0-1化处理,处理方法为:各区域科技创新指标的均值的0-1化值=该区域的该指标的实际值/所有区域的该指标均值的最大值。


  图1各个区域科技创


  (二)模型的构建


  根据上述的理论基础可知不同的科技创新阶段,科技金融对科技创新的影响不同,所以模型中的科技创新的代理变量是分阶段的,其包含4个变量。同时由于各个地区的科技金融发展水平不同,其对科技创新的影响也不相同,本文分别建立了全国(29个省)、东部(11个省)、中部(8个省)、西部(10个省)的面板模型,模型如下:


  全国面板模型:


  东部面板模型:


  中部面板模型:


  西部面板模型:


  其中,SIit表示科技创新的代理变量的面板数据,其中包含4个指标,即SIit=(SI1it,SI2it,SI3it,SI4it)。SI1it指的是特定区域一年的专利授权数;SI2it指的是特定区域一年内的技术市场成交额占科技研发支出的比重的面板数据,即技术市场成交额占比的面板数据;SI3it指的是科技性企业的新产品收入占主营业务收入的比重的面板数据;SI4it指的是高新技术产业内资企业收入的面板数据,代表高新技术产业的产业化程度。GLSRit指政府科技投入经费比的面板数据,代表科技金融的公共金融部分。LTCRit指科技型上市公司占比的面板数据,代表的是资本市场对科技型公司的支持强度;VCIit指风险投资机构数量,代表的是风险资本所提供的科技金融服务,这两个指标代表科技金融中的市场金融的部分。全国面板数据模型中的i表示全国的29个省,东部、中部、西部面板数据模型中的i分别表示上述的相应地区的省;t表示时间维度。同时模型中为了减弱异方差的影响,对所有的指标都取了对数,即LNSIit,LNGLSRit,LNLTCRit,但是由于部分省份的部分年份的风险投资机构数量为0,不能取相应的对数。


  (三)面板数据的单位根检验和协整检验


  面板数据的单位根检验和协整检验主要是对面板数据的时间序列维度进行的平稳性检验,从而避免由于时间序列的不平稳造成虚假回归。但是做面板数据的单位根检验和协整检验的前提是大样本数据,时间维度应该最少为30,而本文由于数据的可得性,时间维度仅有11,本文的面板数据多属于微观面板,没有必要做所谓的单位根检验和协整检验。


  (四)面板数据模型的确立


  常用的面板模型主要有混合效应模型、固定效应模型和随机效应模型。混合回归模型的特点是无论对任何个体和截面,回归系数α和β相同。固定效应模型中αi是随机变量且其变化与Xit有关系。随机效应模型中αi是随机变量,且其变化与Xit无关。模型的确立通过检验确定。


  1.F检验


  首先对模型进行F检验,确定其是否是混合效应模型,得到的检验结果如表1所示。


  表1F检验结果


  由表1可知,上述分不同面板不同的科技创新阶段(即不同的科技创新代理变量)的模型中只有中部面板的第三阶段即高新技术产业化阶段的模型是在5%的显著水平下接受原假设的,也就是说其模型应为混合效应模型。其他的模型均在5%的显著水平下拒绝原假设,也就是说其面板数据模型应为非混合效应模型,接下来要对模型进行Hausman检验,确定模型属于个体固定效应模型还是个体随机效应模型。

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说工学类我国科技金融对科技创新的影响研究——基于面板模型的分析(3)在线全文阅读。

我国科技金融对科技创新的影响研究——基于面板模型的分析(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/lunwen/gongxue/1224531.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: