函数——平面直角坐标系1
一.选择题(共9小题)
1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?( )
A.一 B.二 C.三 D.四
[来源:学科网ZXXK]2.若点M(x,y)满足(x+y)=x+y﹣2,则点M所在象限是( ) A.第一象限或第三象限 B.第二象限或第四象限 C.第一象限或第二象限 D.不能确定
3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A?的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
222
A.(﹣1,0) B.(1,﹣2) C.(1,1) D.(﹣1,﹣1)
4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4?的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=?=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4?,则依此规律,点A2014的纵坐标为( )
A.0
B.﹣3×(
)
2013
C.(2)
2014
D.3×()
2013
5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )
A.2个 B.3个 C.4个 D.5个
6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.若0<m<2,则点p(m﹣2,m)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.如果m是任意实数,则点P(m,1﹣2m)一定不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二.填空题(共8小题)
10.在平面直角坐标系中,点(﹣4,4)在第 _________ 象限.
11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A?的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是 _________ .
[来源:Zxxk.Com]
12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O?,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为 _________ .
13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去?.若点A(,0),B(0,4),则点B2014的横坐标为 _________ .
14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为 _________ .
15点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为 _________ .(填一个即可)
16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是 _________ .
17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是 _________ . 三.解答题(共6小题)
18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与△AOB相似,求点D的坐标.
19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.
20.请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);
(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.
21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2) (1)求点C,D的坐标;
(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.
(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.
22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.
23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0). (1)画出等腰三角形ABC(画一个即可);
(2)写出(1)中画出的三角形ABC的顶点C的坐标.
函数——平面直角坐标系1 参考答案与试题解析
[来源:学科网][来源:学§科§网]
一.选择题(共9小题)
1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?( )
A. 一 C.三 D. 四
考点: 点的坐标. 分析: 由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答. 解答: 解:∵(5,a)、(b,7), ∴a<7,b<5,
∴6﹣b>0,a﹣10<0,
∴点(6﹣b,a﹣10)在第四象限. 故选D. 点评: 本题考查了点的坐标,观察图形,判断出a、b的取值范围是解题的关键.
222
2.若点M(x,y)满足(x+y)=x+y﹣2,则点M所在象限是( ) A. 第一象限或第三象限 B. 第二象限或第四象限 C. 第一象限或第二象限 D. 不能确定
考点: 点的坐标;完全平方公式. 分析: 利用完全平方公式展开得到xy=﹣1,再根据异号得负判断出x、y异号,然后根据各象限内点的坐标特征解答.
222
解答: 解:∵(x+y)=x+2xy+y, ∴原式可化为xy=﹣1, ∴x、y异号,
∴点M(x,y)在第二象限或第四象限. 故选:B. 点评: 本题考查了点的坐标,求出x、y异号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A?的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
B.二
A. (﹣1,0) B.(1,﹣2) C.(1,1) D. (﹣1,﹣1)
考点: 规律型:点的坐标. 专题: 规律型. 分析: 根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案. 解答: 解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2), ∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD一周的细线长度为2+3+2+3=10, 2014÷10=201?4,
∴细线另一端在绕四边形第202圈的第4个单位长度的位置,
即从点B 向下沿BC2个单位所在的点的坐标即为所求,也就是点(﹣1,﹣1). 故选:D. 点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.
4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4?的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=?=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4?,则依此规律,点A2014的纵坐标为( )
A. 0
考点: 专题: 分析: OA4=
B.﹣3×(
)
2013
C.(2)
2014
D. 3×()
2013
规律型:点的坐标.
压轴题;规律型.
根据含30度的直角三角形三边的关系得OA2=
),于是可得到OA2014=3×(
)
2013
3
OC2=3×;OA3=OC3=3×();
2
OC4=3×()
2013
,由于2014=4×503+2,则可判断点A2014在y轴的正半
轴上,所以点A2014的纵坐标为3×(解答:
.
解:∵∠A2OC2=30°,OA1=OC2=3,
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2016届中考数学总复习(13)平面直角坐标系-精练精析(1)及答案解析在线全文阅读。
相关推荐: