西南科技大学城市学院本科生毕业论文
用。
1.2 意义
近年来, 随着电子技术、计算机技术、自动控制技术、多媒体技术的迅速发展,图像数据采集系统技术也取得了长足的发展。在智能仪器仪表和工业测控系统中图像采集占据着重要地位。
传统的图像采集系统大多采用PCI图像采集卡进行图像采集和微型计算机软件进行图像处理或采用单片机作为控制核心的设计方案。采用PCI图像采集卡的设计方案致使系统体积庞大、成本高、携带不便,且因微型计算机总线插槽数目和采集卡通道数目有限,实现多点采集困难。而以单片机作为控制核心的设计方案由于单片机资源有限,实现图像采集需要大量的系统资源和强大的运算处理能力,因此难以实现。从而提出了一种基于ARM处理器的实现图像数据采集的方案,此方案提高了系统图像数据的采集与处理能力,整个系统速度快、功耗低、体积小、易于升级维护
近20年来由于微电子学的进步以及计算机应用的日益广泛,我国图像据采集系统技术也取得了巨大的进展,从技术背景上说,硬件集成电路的不断发展和创新是一个重要因素。各种集成电路芯片都在朝超大规模、全CMOS化的方向发展。微电子技术的不断发展尤其是微处理器的出现.引发了图像采集结构的根本变革,出现了各种采用微处理器的图像采集系统.新的设计思想和新的集成电路不断涌现,图像数据采集系统已进入了崭新的发展阶段,图像数据采集系统广泛应用于我们的日常生活中,如我们用的摄像机、DV等。在工业控制方面,图像采集系统也起着重要的作用。我国图像数据采集系统研究成果很丰富,如基于FPGA的图像采集系统、基于USB总线的图像采集系统、基于ARM的图像采集系统等。并且这些图像采集系统大量应用于机械、电子 、安防、化工、探测、侦查等领域。而基于ARM的图像采集系统在工业生产中的应用还不是很多。
为此,本文特别采用基于ARM微处理器的图像采集和处理系统的解决方案, 并对其可行性,实现方法以及相应的理论进行了深入的探讨,基于ARM嵌入式平台图像采集与处理系统具有体积小,成本低,稳定性高等优点,未来会在诸如只能交通移动机器人,只能产品检测,医学仪器,视频监控系统,便携式多媒体设备等各种应用领域得到越来越广泛的应用。
2
西南科技大学城市学院本科生毕业论文
1.3 总结
所以,综合各方面的因素,本文提出了基于嵌入式微处理器ARM(S3C2440)与OV7725(CMOS)构建的图像数据采集识别系统,完成高质量的图像数据采集功能及星形图形的识别。以下具体介绍该系统的软件硬件设计。
3
西南科技大学城市学院本科生毕业论文
第二章 系统方案设计
2.1系统处理器选择
目前,市面上常用的芯片有单片机、FPGA、DSP、ASIC、ARM9,以下分别介绍这几类芯片的优缺点:
单片机:采用Atmel公司的AT89S52单片机作为主控制器。AT89S52是一个低功耗,高性能的51内核的CMOS 8位单片机,片内含8k空间的可反复擦些1000次的Flash只读存储器,具有256 bytes的随机存取数据存储器(RAM),32个IO口,3个16位可编程定时计数器。且该系列的51单片机可以不用烧写器而直接用串口或并口就可以向单片机中下载程序。但是考虑到本系统要进行图像采集和OV7725传感器的检测以及LCD显示,若使用AT89S52可能在数据处理方面有一些不足,且占用CPU资源较多而使得单片机同时处理其他任务的速度和能力降低,这样图像采集起来速度太慢。
FPGA:采用FPGA(可编程逻辑门阵列)作为主控制器,它可实现系统集成,基于实现宏函数的嵌入式阵列及实现普通功能的逻辑阵列,提供异步的―乘积项‖或者―和项‖构成的寄存器的置位/复位信号,且还可以单独的可编程的输出电压摆率控制位。虽然他还具有高速,高可靠性,开发周期短,质量稳定。开发软件投入小、开发工具先进,可多次擦写等优点。但是本系统主要是对图像进行采集,不需要逻辑性很强的控制器,基于这一点也不选择此方案。
DSP:采用DSP(数字图像处理)作为图像采集控制器,它是在原有通用CPU的基础上,发展改进硬件结构和指令集结构而来的。DSP能够更好的完成在数字信号处理的滤波、卷积和FFT中最重复出现的乘法器,地址产生器,使得DSP在相同时间内能够完成更过的操作,提高程序执行速度,精简指令,有利于DSP结构上的简化和成本的降低,总线结构,专用寻址单元,DSP中采用独立程序总线和数据总线,能够同时取指令和取操作数,区别于传统CPU采用统一城乡和地址空间的冯.诺曼结构,共享程序和数据总线,专用寻址单元。DSP有地址产生器,与ALU并行操作,地址运算不额外占用CPU时间,片内存储器,存放参数和数据,解决了外部存储器的总线竞争和访问速度不匹配问题,访问速度快,缓解DSP数据瓶颈,流水处理,使得两个或更多不同的操作可以重叠执行,提高
4
西南科技大学城市学院本科生毕业论文
DSP程序执行效率。但是它控制系统比较复杂,实时图像处理比较复杂,基于本系统立志于简单高速考虑也放弃此种方案。
ASIC:采用ASIC芯片,与通用集成电路相比,ASIC芯片具有体积小,重量轻、功耗低、可靠性高等几个方面的优势,而且在大批量应用时,可降低成本,但ASIC得缺点在于设计周期长,非大批量应用场合,造价昂贵且功能单一,而且ASIC一旦投入应用,构建的系统灵活性差,新的技术和算法只能重新设计芯片来实现,这样导致ASIC芯片通用性较差。
ARM9:ARM微处理器是一种高性能、低功耗的32位微处器,它被广泛应用于嵌入式系统中。ARM9代表了ARM公司主流的处理器,已经在手持电话、机顶盒、数码像机、GPS、个人数字助理以及因特网设备等方面有了广泛的应用。由于ARM处理器体积小、低功耗、使用0.13um的CMOS制造技术和记忆体编程器制造、有16K的指令快取、MU快取、强大的索引地址模式、且支持ARM处理器16-bit指令模式主频可以达到499MHZ,提高了系统图像数据的采集与实时处理能力。
综合上述几种芯片,我们从硬件、完成高质量的图像采集和实时处理能力、简单处理速度快速等几个方面考虑,选择ARM9作为本设计的系统处理器。
2.2图像传感器的选择
目前图像传感器类型有两种:一种是广泛使用的CCD(电荷藕合)图像传感器;另一种是CMOS(互补金属氧化物导体)图像传感器。这两种都是基于核心成像部件CCD和CMOS而区分的
CCD中文译为\电子耦合组件\,它就像传统相机的底片一样,是感应光线的电路装置,可以将它想象成一颗颗微小的感应粒子,铺满在光学镜头后方,当光线与图像从镜头透过、投射到CCD表面时,CCD就会产生电流,将感应到的内容转换成数码资料储存起来。CCD的尺寸其实是说感光器件的面积大小,CCD像素数目越多、单一像素尺寸越大,捕获的光子越多,感光性能越好,信噪比越低,收集到的图像就会越清晰。因此,尽管CCD数目并不是决定图像品质的唯一重点,我们仍然可以把它当成相机等级的重要判准之一。
互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)
5
西南科技大学城市学院本科生毕业论文
和CCD一样同为可记录光线变化的半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电) 和 P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。同样,CMOS的尺寸大小影响感光性能的效果,面积越大感光性能越好。CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。
由两种感光器件的工作原理可以看出,CCD的优势在于成像质量好,但是由于制造工艺复杂,只有少数的厂商能够掌握,所以导致制造成本居高不下,特别是大型CCD,价格非常高昂。
在相同分辨率下,CMOS价格比CCD便宜,但是CMOS器件产生的图像质量相比CCD来说要低一些。 CMOS影像传感器的优点之一是电源消耗量比CCD低,CCD为提供优异的影像品质,付出代价即是较高的电源消耗量,为使电荷传输顺畅,噪声降低,需由高压差改善传输效果。但CMOS影像传感器将每一像素的电荷转换成电压,读取前便将其放大,利用3.3V的电源即可驱动,电源消耗量比CCD低。CMOS影像传感器的另一优点,是与周边电路的整合性高,可将ADC与信号处理器整合在一起,使体积大幅缩小。
综合考虑既满足功能要求又有较高的性价比,我们选用CMOS芯片的OV7725图像传感器。
OV7725是一款高度整合的1/4英寸CMOS CameraChip(TM)传感器,在一个单芯片上提供一部VGA摄像头和影像处理器的全部功能。OV7725的一个独特性能是有很大的主光线角度,它能显著减小模块高度,而高度是让相机能够装配进当前超薄笔记本电脑的关键因素。OV7725以OmniVision的OmniPixel2(TM)专利技术为基础,弱光环境中也能提供卓越的性能,在VGA模式下能够以60帧每秒(fps)或在QVGA模式下120fps运行。OV7725无铅、28引脚CSP2封装。
2.3系统方案
本图像数据采集系统由ARM处理器、CMOS图像传感器、存储器和电源模块构成。
6
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库机器人视觉识别系统研究(2)在线全文阅读。
相关推荐: