所以2a?32?2?42, 所以a?22,从而b?2,
所以椭圆C的方程为x2y28?4?1. (2)因为椭圆C的左顶点为A,则点A的坐标为??22,0?,
因为直线y?kx(k?0)与椭圆x2y28?4?1交于两点E,F, 设点E?x0,y0?(不妨设x0?0),则点F??x0,?y0?, ?y?kx联立方程组?,??x2y2,消去y得x28?8?4?1?1?2k2, 所以x20?2,22k,
1?2k2y0?1?2k2所以直线AE的方程为y?k1?1?2k2?x?22?,
因为直线AE与y轴交于点M,
令x?0得y?22kk1?1?2k2,即点M(0,221?1?2k2),
同理可得点N(0,22k.
1?1?2k2)假设在x轴上存在点P(t,0),使得?MPN为直角,则???MP?????NP??0,
即t2??22k22k,即1?1?2k2??1?1?2k2?0t2?4?0.
解得t?2或t??2.
故存在点P?2,0?或P??2,0?,无论非零实数k怎样变化,总有?MPN为直角.
21、.解:(1)当m?1时,f?x??ex?x22?x?1,则f??x??ex?x?1, 则f???x??ex?1 ①, 令f???x??0,得x?0,
当x?0时,ex?1,∴ex?1?0,即f???x??0,
∴函数y?f??x?在?0,???上为增函数,即当x?0时,f??x??f??0??0, ∴函数y?f?x?在?0,???上为增函数,即当x?0时,f?x??f?0??0.
(2)由(1)和①式知,当x?0时,ex?1?0,∴f???x??0,
∴函数f??x??ex?x?1的单调递减区间为???,0?,单调递增区间为?0,???,
∴f??x??0??0,∴?x?R,f??x??0,即exmin?f??x?1②,
(I)当x??1时,x?1?0,又m?1,∴m?x?1??x?1,
∴由②式得ex?m?x?1??ex??x?1??0,即f??x??0 ,
∴函数y?f?x?在??1,???上为增函数,又f?0??0,
∴当x?0时,f?x??f?0??0,当?1?x?0时,f?x??f?0??0,
∴函数y?f?x?在??1,???上有且仅有一个零点x?0.
(II)当x??1时,
xⅰ)当0?m?1时,?m?x?1??0,e?0,∴f??x??ex?m?x?1??0,
mm?1?0, 函数y?f?x?在???,?1?时单调递减,∴f?x??f??1??e??1?22?1故0?m?1时,函数y?f?x?在???,?1?上无零点;
ⅱ)当m?0时,由f??x??ex?mx?m,得f???x??ex?m?0, 函数y?f??x?在???,?1?上单调递增,f???1??e?1?0,
e?1?1时,f??x??e?1?m?x?1??0, 当x?me?1?1,?1),使f??x???0, ∴由函数零点存在性定理知?x?(m????1故当x?x,?1时,0?f?x?f??x??f???1??e, ??当x???,x时,f??x??f?x?0,
????????∴函数y?f?x?的单调递减区间为???,x??,单调递增区间为?x?,?1?,
?1又f??1??e?m??1?0,∴对?x??x,?1?,f?x??0, ?2又当x??1?2m?1?x??1?时,?x2?mx?1?0,∴f?x??0,
2m由f??2?x?0??,x??, ?1?,?1?,∴???????m???再由函数零点存在性定理知?x0???,x,使得f???x0??0,
综上所述,当0?m?1时,函数y?f当m?0时,函数y?f?x?有且仅有一个零点,
?x?有两个零点.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2016届高三数学(文)五月检测试题含答案(2)在线全文阅读。
相关推荐: