17.解析:(1)由3a?2csinA及正弦定理得,
(2)∵c?7,C??3,由面积公式得
1?33,即ab?6....① absin?232由余弦定理得a2?b2?2abcos2?3?7,即a2?b2?ab?7,
2∴?a?b??7?3ab....②,由①②得?a?b??25,故a?b?5. 18.解:(1)x?4,y?30, ∴
???3?4??28?30???4?4??30?30???6?4??35?30???5?4??31?30???2?4??26?30??2.1, b22222?3?4???4?4???6?4???5?4???2?4???30?2.1?4?21.6,∴y关于x的线性回归方程为:y??2.1x?21.6. a(2)
2 519. 证明:(1)∵PD?平面ABCD,
AC?平面ABCD,∴AC?PD,
∵四边形ABCD是菱形,
∴AC?BD,又∵PD?BD?D,
∴AC?平面PBD,而AC?平面EAC,∴平面EAC?平面PBD. (2)∵E是PB中点,连结EO,则EO//PD,
EO?平面ABCD,且EO?1,
∵OD?1,OC?3,∴DE?1147, ?2,EC?2,∴S?CDE??2?222∵VB?EDC?VE?BDC?111113, VP?BDC???S?BDC?PD???2?3?2?223623设点B平面EDC的距离为d,
页 6第
∵VB?EDC?1332221,∴d?. ?S?CDE?d??3??33S?CDE77p?1, 220.解: (1)据已知得椭圆E的右焦点为F?1,0?,∴
p?2,故抛物线C方程为y2?4x,易知直线l的方程为y??x?1,于是
?y??x?12???x?1??4x?x2?6x?1?0, ?2?y?4x设A?x1,y1?,B?x2,y2?,则?∴AB?2?x1?x2?6,
?x1?x2?1k2?1??x1?x2??4x1x2?AB?2?36?4?8(或AB?p?x1?x2?8).
(2)
根据题意知l的斜率必存在,于是设l方程为
y?k?x?1?,点M坐标为M?0,?k?,
∵A?x1,y1?,B?x2,y2?为l与抛物线C的交点,
2??y?4x∴??k2x2?2?k2?2?x?k2?0, ??y?k?x?1????16?k2?1??0?4???x1?x2?2?2.........................8分
k?x1?x2?1??????????又∵MA?mAF,∴?x1,y1?k??m?1?x1,?y1?,
得m?页
x1x2,同理n?.................10分 1?x11?x27第
4?22x1?x2??2x1x2?x1x2k∴m?n??????1.
1?x11?x21??x1?x2??x1x21?2?4?1k22?21. 解:(1)函数f?x???a???1?2?x?lnx的定义域为?0,???, 2?1?x2?1??x?1??x?1?12当a?0时,f?x???x?lnx,f??x???x??; ?xxx2当2b?168,有f??x??0;当b?,有f??x??0, 33∴f?x?在区间?,1?上是增函数,在?1,e?上为减函数,
?1??e?1e21?1?又f????1?2,f?e??1?,f?1???,
2e22?e?e21∴fmin?x??f?e??1?,fmax?x??f?1???.
22(2)g?x??f?x??2ax??a???1?2???, ?x?2ax?lnx,则g?x?的定义域为?0,2?2?2a?1?x?1?1?2a?1?x?2ax?1?x?1????.
g??x???2a?1?x?2a???xxx11,令g??x??0,得极值点x1?1,x2?, 22a?11当x2?x1?1,即?a?1时,在?0,1?上有g??x??0,在?1,x2?上有g??x??0,
2①若a?在?x2,???上有g??x??0,此时g?x?在区间?x2,???上是增函数, 并且在该区间上有g?x??g?x2?,??,不合题意;
当x2?x1?1,即a?1时,同理可知,g?x?在区间?1,???上, 有g?x??g?1?,??,也不合题意; ②若a?????1,则有2a?1?0,此时在区间?1,???上恒有g??x??0, 2从而g?x?在区间?1,???上是减函数;
要使g?x??0在此区间上恒成立,只须满足g?1???a?11?0?a??, 22页 8第
由此求得a的范围是???11?,?. 22???11?,?时,对?x??1,???,g?x??0恒成立. ?22?2综合①②可知,当a???22. 解:(1)圆C的普通方程为?x?1??y2?1,又x??cos?,y??sin?,所以圆C的极坐标方程为??2cos?;
??1?2cos?1??1?1??(2)设??1,?1?为点P的极坐标,则有?,解得??,设??2,?2?为点Q的极坐标,??1??1???33??????2?sin???33??2?322????3???,解得???,由于?1??2,
?2?????2?3??3?所以PQ??1??2?2,所以线段PQ的长为2.
??2x?2,x??3?23. 解:(1)f?x??x?1?x?3??4,?3?x?1,
?2x?2,x?1?所以当x???3,1?时,f?x?为常函数. (2)由(1)得函数f?x?的最小值为4, 所以实数a的取值范围为a?4
页 9第
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2015-2016学年贵州省思南中学高二下学期期末考试数学(文)试题(2)在线全文阅读。
相关推荐: