基于PT100热电阻的单片机温度检测系统设计
表2-9 共阴极和共阳极LED数码管几种八段编码
共阴顺序小数点暗 dp g f e d c b a 0 1 2 3 4 5 6 7 8 9 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 16进制 3FH 06H 5BH 4FH 66H 6DH 7DH 07H 7FH 6FH a b c d e f g dp 1 1 1 1 1 1 0 0 16进制 FCH 小数点亮 40H 79H 24H 30H 19 H 12 H 02 H 78 H 00 H 10 H 小数点暗 C0 H F9 H A4 H B0 H 99 H 92 H 82 H F8 H 80 H 90 H 共阴逆序小数点暗 共阳顺序 共阳顺序 0 1 1 0 0 0 0 0 60H 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 DAH F2H 66H B6H BEH E0H FEH F6H 2.4.3 LED数码管显示方式和典型应用
LED数码管显示电路在单片机应用系统中可分为静态显示方式和动态显示方式。 ① 静态显示方式。在静态显示方式下,每一位显示器的字段需要一个8位I/O口控制,而且该I/O口须有锁存功能,N位显示器就需要N个8位I/O口,公共端可直接接+5V(共阳)或接地(共阴)。显示时,每一位字段码分别从I/O控制口输出,保持不变直至CPU刷新显示为止。也就是各字段的亮灭状态不变。静态显示方式编程较简单,但占用I/O口线多,即软件简单、硬件成本高,一般适用显示位数较少的场合。
② 动态扫描显示方式。当要求显示位数较多时,为简化电路、降低硬件成本,常采用动态扫描显示电路。所谓动态扫描显示电路是将显示各位的所有相同字段线连在一起,每一位的a段连在一起,b段连在一起?g段连在一起,共8段,由一个8位I/O口控制,而每一位的公共端(共阳或共阴COM)由另一个I/O口控制。这种连接方式由于将多位字段线连在一起,当输出字段码时,由于多门同时选通,每一位将显示相同的内容。因此要显示不同的内容,必须采取轮流显示的方式。即在某一瞬间时,只让某一位的字位线处于选通状态(共阴极LED数码管为低电平,共阳极为
10
基于PT100热电阻的单片机温度检测系统设计
高电平),其他各位的字位线处于开断状态,同时字段线上输出这一位相应要显示字符的字段码。在这一瞬时,只有这一位在显示,其他几位暗。同样在下一瞬时,单独显示下一位,这样依次轮流显示,循环扫描。由于人的视觉滞留效应,人们看到的是多位同时稳定显示。
本设计为静态显示,电路如图2-10所示。显示器由4个LED数码管组成。输入有12个信号,它们是段选信号P1.0~P1.7和位选信号INT1、INT0、T1、T0。若想使LED发光则必须保证有足够大的电流流过LED的各段。流过LED的电流大时,LED发光亮度高;流过LED的电流小时,LED发光亮度就低,为了使LED 能够长期可靠地工作应使流过LED的电流为其额定电流。为LED显示器提供电流的电路称为LED的驱动电路。由于显示部分选择了静态显示,因此驱动电路也选择静态驱动。
静态显示电路的驱动电路分为段驱动电路和位驱动电路两种。段驱动电路考虑到所有的段电流均流过位选线,因此位驱动电路的驱动能力应为段驱动能力的8倍(最严重情况八段全亮)。
驱动电路可采用分立元件电路,也可采用集成驱动电路,此外有些硬件译码电路本身包括驱动电路。由于这里采用动态输出,且单片机的内部结构决定了数码管可以直接由单片机驱动。因此采用分立元件的显示驱动电路也很简单。
2.4.4 LED数码管的原理图
LED数码管显示原理图如图2-10。
图2-10 LED数码管显示原理图
11
基于PT100热电阻的单片机温度检测系统设计
2.5 声光报警电路
报警电路原理如图2-11。
图2-11 声光报警电路原理图
2.6 单片机接口电路
2.6.1单片机的时钟电路
单片机内部的振荡电路是一个高增益反相放大器,引线XTAL1和XTAL2分别是放大器的输入端和输出端。单片机内部虽然有振荡电路,但要形成时钟,外部还需附加电路。单片机的时钟产生方式有两种。
① 内部时钟方式。利用其内部的振荡电路在XTAL1和XTAL2引线上外接定时元件,内部振荡电路便产生自激振荡,用示波器可以观察到XTAL2输出的时钟信号。最常用的是在XTAL1和XTAL2之间连接晶体振荡器与电容构成稳定的自激震荡器,如图2-12所示。晶体可在1.2~12MHz之间选择。MCS-51单片机在通常应用情况下,使用振荡频率为6MHz的石英晶体,而12Hz频率的晶体主要是在高速串行通信情况下才使用。对电容值无严格要求,但它的取值对振荡频率输出的稳定性、大小及振荡电路起振速度有少许影响。C1和C2可在20~100pF之间取值,一般取30pF左右。
② 外部时钟方式。在由我单片机组成的系统中,为了各单片机之间时钟信号的
12
基于PT100热电阻的单片机温度检测系统设计
同步,应当引入惟一的合用外部振荡脉冲作为各单自片机的时钟。外部时钟方式中是把外部振荡信号源直接接入XTAL1或XTAL2。由于HMOS和CHMOS单片机外部时钟进入的引线不同,其外部振荡信号源接入的方式也不同。HMOS型单片机由XTAL2进入,外部振荡信号接至XTAL2,而内部反相放大器的输入端XTAL1应接地,如图2-13所示。由于XTAL2端的逻辑电平不是TTL的,故还要接一上接电阻。CHMOS型单片机由XTAL1进入,外部振荡信号接至XTAL1,而XTAL2可不接地,如图2-14所示。
图2-12 内部时钟电路 图2-13 HMOS型外部时钟电路 图2-14外部时钟电路
2.6.2复位电路和复位状态
单片机的复位是靠外部电路实现的。单片机工作后,只要在它的RST引线上加载10ms以上的高电平,单片机就能够有效地复位。
① 复位电路。单片机通常采用上电自动复位和按键复位两种方式。最简单的复位电路如图2-15所示。上电瞬间,RC电路充电,RST引线端出现正脉冲,只要RST端保持10ms以上的高电平,就能使单片机有效地复位。在应用系统中,有些外围芯片也需要复位。如果这些芯片复位端的复位电平的要求一致,则可以将复位信号与之相连。
图 2-15 简单的复位电路
13
基于PT100热电阻的单片机温度检测系统设计
② 复位状态。复位电路的作用是使单片机执行复位操作。复位操作主要是把PC初始化为0000H,使单片机从程序存储器的0000H单元开始执行程序。程序存储器的0003H单元即单片机的外部中断0的中断处理程序的入口地址。留出的0000H~0002H 3个单元地址,仅能够放置一条转移指令,因此,MCS-51单片机的主程序的第一条指令通常情况下是一条转移指令。
除PC之外,复位还对其他一些特殊功能的寄存器有影响,它们的复位状态如表2-16所示。利用它们的复位状态,可以减少应用程序中的初始化编程。
由表2-16可知,除SP=07H,P0~P3 4个锁存器均为FFH外,其他所有的寄存器均为0,很好记忆。记住他们的复位状态,对于熟悉单片机的操作,减少应用程序中的初始化编程都是十分必要的。
单片机的复位不影响片内RAM的状态(包括通用寄存器Rn)。
P0、P1、P2、P3共有4个8位并行I/O口,它们引线为:P0.0~P0.7、P1.0~P1.7、P2.0~P2.7、P3.0~P3.7,共32条引线。这32条引线可以全部用做I/O线,也可将其中部分用做单片机的片外总线。
表2-16 寄存器的复位状态
寄存器 PC ACC PSW SP DPTR P0~P3 IP IE ① 控制线
A、ALE地址锁存允许
当单片机访问外部存储器时,输出信号ALE用于锁存P0口输出的低8位地址A7~A0。ALE的输出频率为时钟振荡频率的1/6。
B、EA程序存储器选择
14
复位状态 0000H 00H 00H 07H 0000H FFH Xxx00000B 0xx00000B 寄存器 TMOD TCON TL0 TH0 TL1 TH1 SCON PCON 复位状态 00H OOH 00H 00H 00H 00H 00H 0xx00000B
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库基于PT100热电阻的单片机温度检测系统设计(4)在线全文阅读。
相关推荐: