???x?lnx?x?lnx?解:y??22ln2x?2xlnx?x 2lnxcosx?2x⑷y?
x3??x(?sinx?2?cosx?2?x??cosx?2??x?解:y?? ??x?x3x332xln2)?3(cosx?2x) 4xlnx?x2⑸y?
sinx解:y???lnx?x?2?1sinx(?2x)?(lnx?x2)cosxsinx??lnx?x??sinx?x? 2sin2xsinx2?⑹y?x4?sinxlnx 解:y???x????sinx??lnx?sinx?lnx???4x43?sinx?cosxlnx xsinx?x2⑺y?
3x???sinx?x?3??sinx?x??3?解:y???3?2x2xx23x(cosx?2x)?(sinx?x2)3xln3 ?2x3⑻y?etanx?lnx 解:y??x?e?x?ex1tanx?e?tanx???lnx??etanx? ?cos2xxx??x⒉求下列函数的导数y?: ⑴y?e解:y??x
x?e???e?x?1?11?x2?ex 22x⑵y?lncosx 解:y?? ⑶y?
1??sinx???sinx??tanx cosxcosxxx
6
??1?7?7解:y???x8??x8
??8??⑷y?sin2x
?x?sinx??2sinx?cosx?2sin2x
解:y??2sin⑸y?sinx2
2?y?cosx?2x?2xcosx 解:
⑹
y?cosex2
x2解:
y???sinee????2xex2n?x2sinex2
⑺y?sinnxcosnx 解:y??⑻
?sinx??cosnx?sinx?cosnx???nsinnn?1xcosxcosnx?nsinnxsin(nx)
y?5sinx
sinx解:y??5ln5?cosx?ln5cosx5sinx
cosxy?e⑼
解:
y??ecosx??sinx???sinxecosx
⒊在下列方程中,y?y(x)是由方程确定的函数,求y?: ⑴ycosx?e
解:y?cosx?ysinx?2e⑵y?cosylnx
解:y??siny.y?lnx?cosy.2y2yy? y??ysinx
cosx?2e2y1cosy y?? xx(1?sinylnx)x2⑶2xsiny?
y2xy?2ysiny2yx?x2y?x22yx??解:2xcosy.y??2siny? y?y(2xcosy?)??2siny222222xycosy?xyyy
7
⑷y?x?lny 解:y??y?y ?1 y??yy?1⑸lnx?ey?y2 解:
11?eyy??2yy? y?? yxx(2y?e)⑹y2?1?exsiny
exsiny解:2yy??ecosy.y??siny.e y??
2y?excosyxx⑺ey?ex?y3
ex2解:ey??e?3yy? y??y?3y
eyx2⑻y?5x?2y
5xln5解:y??5ln5?y?2ln2 y??
1?2yln2xy⒋求下列函数的微分dy:(注:dy?⑴y?cotx?cscx 解:y???csc⑵y?2y?dx)
?1cosx?)dx 22cosxsinxx?cscxcotx dy?(lnx sinx11sinx?lnxcosxsinx?lnxcosxxdx 解:y??x dy?2sinxsin2x⑶y?sin2x
解:y??2sinxcosx dy?2sinxcosxdx ⑹y?tanex
2解:y??sec
ex?ex dy?sec2ex?exdx?exsec2exdx
338
⒌求下列函数的二阶导数: ⑴y?x
33??1?1111??解:y??x2 y???????x2??x2
22?2?4⑵y?3x
x解:y??3⑶yln3 y???ln3?3x?ln3?ln23?3x
?lnx
11 y????2 xx解:y??⑷y?xsinx
解:y??sinx?xcosx y???cosx?cosx?x??sinx??2cosx?xsinx
(四)证明题
设f(x)是可导的奇函数,试证f?(x)是偶函数. 证:因为f(x)是奇函数 所以f(?x)??f(x)
两边导数得:f?(?x)(?1)??f?(x)?f?(?x)?f(x) 所以f?(x)是偶函数。
高等数学基础形考作业3答案:
第4章 导数的应用
(一)单项选择题
⒈若函数f(x)满足条件(D),则存在??(a,b),使得f?(?)? A. 在(a,b)内连续 B. 在(a,b)内可导
C. 在(a,b)内连续且可导 D. 在[a,b]内连续,在(a,b)内可导 ⒉函数f(x)?x?4x?1的单调增加区间是(D ). A. (??,2) B. (?1,1) C. (2,??) D. (?2,??) ⒊函数y?x?4x?5在区间(?6,6)内满足(A ). A. 先单调下降再单调上升 B. 单调下降
9
22f(b)?f(a).
b?a C. 先单调上升再单调下降 D. 单调上升
⒋函数f(x)满足f?(x)?0的点,一定是f(x)的(C ). A. 间断点 B. 极值点 C. 驻点 D. 拐点
⒌设f(x)在(a,b)内有连续的二阶导数,x0?(a,b),若f(x)满足( C ),则f(x)在x0取到极小值.
A. f?(x0)?0,f??(x0)?0 B. f?(x0)?0,f??(x0)?0 C. f?(x0)?0,f??(x0)?0 D. f?(x0)?0,f??(x0)?0
⒍设f(x)在(a,b)内有连续的二阶导数,且f?(x)?0,f??(x)?0,则f(x)在此区间内是( A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的
(二)填空题
⒈设f(x)在(a,b)内可导,x0?(a,b),且当x?x0时f?(x)?0,当x?x0时f?(x)?0,则x0是
f(x)的 极小值 点.
⒉若函数f(x)在点x0可导,且x0是f(x)的极值点,则f?(x0)? 0 . ⒊函数y?ln(1?x2)的单调减少区间是(??,0). ⒋函数f(x)?ex的单调增加区间是(0,??)
⒌若函数f(x)在[a,b]内恒有f?(x)?0,则f(x)在[a,b]上的最大值是f(a). ⒍函数f(x)?2?5x?3x3的拐点是
2?0,2?
(三)计算题
⒈求函数y?(x?1)(x?5)的单调区间和极值. 解:令y??2?x?5?2?(x?1)?2?(x?5)X ?3(x?5)(x?1)
?驻点x?1,x?5
列表: 极大值:
(??,1) + 上升 1 0 极大值32 (1,5) — 下降 5 0 极小值0 (5,??) + 上升 y? f(1)?32
y 极小值:f(5)?0
10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2016最新电大高等数学基础形成性考核手册答案(含题目)(2)在线全文阅读。
相关推荐: