22两式相减得an?an?1?Sn?Sn?2?an?an?1,所以an?an?1?1(n?3). 23又S12?a1,且a1>0,所以a1=1, ?a1233332,所以(1?a2)2?1?a2,所以a2S2?(a1?a2)2?a1?a2?a2?2a2?0
由a2>0,得a2=2,所以an?an?1?1(n?2),数列{an}为等差数列, 通项公式an=n. ?????7分
(注:猜对通项公式an=n,给4分) (II)法一:bn?(1?)?a(1?)?令t?1n21n1a?2??1?a n2n1,则bn?t2?(a?2)t?1?a,g(t)?t2?(a?2)t?1?a n2?a3131?时,即a?时,g(t)在(0,]上为减函数,且g()?g(1), 当24242所以b1?b2?b3??
2?a311?时,即a?时,g()?g(1),从而b2?b1,不合题意. 24221所以实数a的取值范围为a?. ?????14分
21111?)(??a?2)?0 法二:bn?1?bn?(n?1nn?1n1111??a?2?0,即a?2??对任意n?N*成立 所以
n?1nn?1n1所以实数a的取值范围为a?. ??????14分
2当
20、(1)解法一:令M为(x0,y0),因为M在抛物线C2上,故x02?4y0,① 又MF1?55,则y0?1? ② 33226,y0?
33由①②解得x0??椭圆C1的两个焦点为F1(0,1),F2(0,?1),点M在椭圆上,由椭圆定义,得2a?MF1?MF2
?(?262262?0)2?(?1)2?(??0)2?(?1)2?4 3333?a?2,又c?1,?b2?a2?c2?3
y2x2?椭圆C1的方程为??1
432262()2(?)483?1??1 解法二: 同上求得M,而点M在椭圆上,故有32?,即
ab29a23b222又c?1,即b?a?1,解得a?4,b?3
22y2x2?椭圆C1的方程为??1
43
(2)证明:设A(x1,y1),B(x2,y2),Q(x,y)
????????由AP???PB,可得(1?x1,3?y1)???(x2?1,y2?3)
⑤ ?x1??x2?1??即?
y??y?3(1??)?12⑥ ????????由AQ??QB,可得(x?x1,y?y1)??(x2?x,y2?y)
?x1??x2?(1??)x即?
y??y?(1??)y?12
⑦ ⑧
⑤×⑦得x12??2x22?(1??2)x, ⑥×⑧得y12??2y22?3y(1??2) 两式相加,得(x12?y12)??2(x22?y22)?(1??2)(x?3y)
又点A,B在圆x2?y2?3上,?x12?y12?3,x22?y22?3,且???1 即x?3y?3,故点Q总在直线x?3y?3上 方法二:
????????x?1由AP???PB,可得(1?x1,3?y1)???(x2?1,y2?3),所以??1
x2?1????????x?x1由AQ??QB,可得(x?x1,y?y1)??(x2?x,y2?y),所以??
x2?x所以
x?x1x1?1x?x2?2x1x2,所以x??1(*) ?x2?xx2?1x1?x2?223当斜率存在时,设直线为y?k(x?1)?3
当斜率不存在时,由特殊情况得到Q(1,)
?y?kx?3?k222?(1?k)x?2(3?k)kx?k?6k?6?0 ?22?x?y?32(3?k)kk2?6k?6?x1?x2??,x1x2? 221?k1?k代入(*)得x?3k?6,而y?k(x?1)?3,消去k,得x?3y?3 3k?1而Q(1,)满足方程,所以Q在直线x?3y?3上
21.(本题满分14分) 解:(1)f?(x)?231x?m. 由f?(0)?0,得m??1,此时f?(x)??. x?1x?1当x?(?1,0)时,f?(x)?0,函数f(x)在区间(?1,0)上单调递增; 当x?(0,??)时,f?(x)?0,函数f(x)在区间(0,??)上单调递减.
?函数f(x)在x?0处取得极大值,故m??1.??????????3分
(2)令h(x)?f(x)?g(x)?f(x)?f(x1)?f(x2)(x?x1)?f(x1),????4分
x1?x2则h?(x)?f?(x)?f(x1)?f(x2).
x1?x2Q函数f(x)在x?(x1,x2)上可导,?存在x0?(x1,x2),
使得f?(x0)?f(x1)?f(x2).
x1?x2Qf?(x)?1x0?x11?1,?h?(x)?f?(x)?f?(x0)? ??x?1x?1x0?1(x?1)(x0?1)Q当x?(x1,x0)时,h?(x)?0,h(x)单调递增,?h(x)?h(x1)?0; Q当x?(x0,x2)时,h?(x)?0,h(x)单调递减,?h(x)?h(x2)?0;
故对任意x?(x1,x2),都有f(x)?g(x).??????????8分 (3)用数学归纳法证明.
①当n?2时,Q?1??2?1,且?1?0,?2?0,
??1x1??2x2?(x1,x2),?由(Ⅱ)得f(x)?g(x),即
f(?1x1??2x2)?f(x1)?f(x2)(?1x1??2x2?x1)?f(x1)??1f(x1)??2f(x2),
x1?x2?当n?2时,结论成立. ??????????9分
②
假
设
当
n?(k?k2时
2k结论成立,即当
?1??2?L??k?1时,
f(?1?x1?Lx2???k)x??(1f)x?L(1?2?k?1. x当n,正数?1,?2,L,?k?1满足f)?(时f)设xk?k??1??2?L??1,令m??1??2?L??k,?1?k?1??1m,?2??2m,L,?k??km, 则m??k?1n?1,且
?1??2?L??k?1.
f(?1x1??2x2?L??kxk??k?1xk?1) ?f[m(?1x1?L??kxk)??k?1xk?1] ?mf(?1x1?L??kxk)??k?1f(xk?1) ?m?1f(x1)?L?m?kf(xk)??k?1f(xk?1)
??1f(x1)?L??kf(xk)??k?1f(xk?1) ??????????13分
?当n?k?1时,结论也成立.
综上由①②,对任意n?2,n?N,结论恒成立. ??????????14分
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库执信中学2012届高三模拟试题(2)在线全文阅读。
相关推荐: