实验三 自动控制系统的稳定性和稳态误差分析
一、实验目的
1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。
二、实验任务
1、稳定性分析
欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为
G(s)?0.2(s?2.5),用MATLAB编写程序来判断闭环系统的稳定
s(s?0.5)(s?0.7)(s?3)性,并绘制闭环系统的零极点图。
在MATLAB命令窗口写入程序代码如下: z=-2.5
p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: 0.2 s + 0.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5
s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5是系统的特征多项式,接着输入如下MATLAB程序代码:
den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下:
p =
-3.0058 -1.0000 -0.0971 + 0.3961i
-0.0971 - 0.3961i
p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5
p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc)
[z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下:
z = -2.5000 p =
-3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i
k =
0.2000
输出零极点分布图如图3-1所示。
图3-1 零极点分布图
(2)已知单位负反馈控制系统的开环传递函数为
G(s)?k(s?2.5),当取k=1,10,100用MATLAB编写程序来
s(s?0.5)(s?0.7)(s?3)判断闭环系统的稳定性。
只要将(1)代码中的k值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k变化对系统稳定性的影响。
K=1时
K=10时
K=100时
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库自动控制系统的稳定性和稳态误差分析在线全文阅读。
相关推荐: