?GEGC? GAGF?∠AGF=∠EGC
?△AGF∽△EGC……………………..(6分)
?∠AFE=∠ACB=60°, ?△AEF为等边三角形 ?AE=EF……………………..(7分)
8.28.解:(1)OE=OF.…………1分
(2)补全图形如右图.…………2分
OE=OF仍然成立.…………3分 证明:延长EO交CF于点G. ∵ AE⊥BP,CF⊥BP, ∴ AE∥CF. ∴ ∠EAO =∠GCO. 又∵ 点O为AC的中点, ∴ AO=CO.
∵ ∠AOE=∠COG, ∴ △AOE≌△COG. ∴ OE=OF.…………5分
(3)CF?OE?AE或CF?OE?AE.…………7分 9.28.解:(1)证明:在Rt△ABC中,
∵ CD是斜边AB上的中线. ∴ CD =
AEPOFBDGC1AB. 2在△ABF中,点M,N分别是边AF,BF的中点,
1AB, 2∴CD = MN. ························································································ 2分
∴ MN =
(2)答:CN与EN的数量关系CN = EN,
CN与EN的位置关系CN⊥EN. ························································ 3分 证明:连接EM,DN,如图.
与(1)同理可得CD = MN,EM = DN.
在Rt△ABC中,CD是斜边AB边上的中线, ∴ CD⊥AB.
在△ABF中,同理可证EM⊥AF. ∴ ∠EMF=∠CDB= 90?.
∵D,M,N分别为边AB,AF,BF的中点, ∴ DN∥AF,MN∥AB.
∴ ∠FMN =∠MND,∠BDN =∠MND. ∴ ∠FMN=∠BDN.
∴ ∠EMF +∠FMN =∠CDB +∠BCN. ∴ ∠EMN =∠NDC. ∴ △EMN≌△DNC. ∴ CN = EN,∠1 =∠2. ∵ ∠1 +∠3 +∠EMN = 10?, ∴ ∠2 +∠3 +∠FMN = 90?.
∴ ∠2 +∠3 +∠DNM= 90?,即∠CNE = 90?.
∴ CN⊥EN. ···················································································· 5分
(3)EN的最大值为
10.28.(1)150, -----------------------------------------------------1分
2a?b2a?b,最小值为. ············································ 7分 22PA2?PC2?PB2.----------------------------------3分
(2)如图,作?PAP??120°,使AP??AP,连接PP?,CP?.过点A作AD⊥PP?于D点.
∵?BAC??PAP??120°,
即?BAP??PAC??PAC??CAP?, ∴?BAP??CAP?. ∵AB=AC,AP?AP?,
∴△BAP≌△CAP?. --------------------------------4分
180???PAP??30°. ∴P?C?PB,?APD??AP?D?2 ∵AD⊥PP?, ∴?ADP?90°.
P'ADPB C∴在Rt△APD中,PD?AP?cos?APD?∴PP??2PD?3AP. ∵?PAC??PCA?60°,
∴?APC?180???PAC??PCA?120°. ∴?P?PC??APC??APD?90°. ∴在Rt△P?PC中,P?P2?PC2?P?C2. ∴
3AP. 23PA2?PC2?PB2.-------------------------------------------------------------------------------------6分
4PA2sin2 (3)
分
?2?PC2?PB2.-----------------------------------------------------------------------7
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库北京初三数学第一学期几何大题期末专练(3)在线全文阅读。
相关推荐: