答案
1.27. 解:方法1:
∵线段AB的垂直平分线BC交于点D, AD=BD, …………………1分 ∴∠1=∠B
∵∠B=α∴∠2=∠1+∠B=2α………3分
1AC1在Rt△ABC中,∠C=90°,tanα= ∴?
2BC2设AC?k,DC?x,则AD?BD?2k?x,……………………………4分
在Rt△ADC中,∠C=90°,由勾股定理得,k2?x2?(2k?x)2,…………………5分
3k,………………………6分 4ACk4∴tan2????.………………………7分
3kDC34解得:x?方法2:过A作AD⊥A'B于点D. …………………………………………1分 ∵△ABC、△A'BC关于BC对称, ∴∠1=∠ABC =α
∴∠A'BA=∠1+∠ABC =2α…………………………………………2分 1AC1在Rt△ABC中,∠C=90°,tanα=∴?
2BC2设AC?A'C?k,则BC?2k,AB?A'B?5k,…………………………3分 ∵S?ABA'??AA'?BC??A'B?AD
∴2k?2k?5k?AD………………………………………………………4分
1212∴AD?45k……………………………………………………………5分 5在Rt△ABD中,∠ADB=90°,AB?5k,AD?45k 5∴BD?35k………………………………………………………………6分 545kAD4?5?.………………………………………………7分 ∴tan2??BD35k35方法3:延长C'A交BC的延长线于点D. ………………………………………1分 ∵△ABC、△ABC’关于直线AB对称, ∴∠1=∠ABC =α,BC'= BC
∴∠C'BC=∠1+∠ABC =2α………………………………………………2分 1∵tanα=∴设AC = k,则BC = 2k,
2BC'= 2k……………………………………………………………………3分 设CD = x
∵∠ACB=90°,∴∠ACD=90°,
∴△ACD ∽△BC’D………………………………………………………4分 ∴
ACDCkx?? ∴ ,,2kC'DBCDC∴C'D = 2x∴AD =2x-k 在Rt△ACD中,∠ACD=90°,
由勾股定理得,k2?x2?(2x?k)2………………5分
4x?k………………………6分
342?kCD3?4……………7分 ?∴tan2??2k3BC,,2.25. (1) 锐角△ABC的最小覆盖圆是它的外接圆(不必写出结论,作图正确即可)
画图
略. …………………2分 (2)
直角△ABC
最小覆盖圆的圆心是斜边中
点; …………………3分
(3)①锐角△ABC的最小覆盖圆是它的外接圆,
②直角△ABC的最小覆盖圆是它的外接圆(或以最长边为直径的圆), ③钝角△ABC
的最小覆盖圆是以最长边为直径的
圆. …………………5分
注:第(3)问不必严格分三种情况叙述,不遗漏即可.
3.28.(1)相等;…………1分 (2)想法一:
∵△ABC是等边三角形,
∴AB=BC, ∠B=60°.…………2分 ∵AH=CE,∴BH=BE. ∴∠BHE=60°.
∴AC//HE.∴∠1=∠2. ……………………………3分 在△AOE和△COM中,∠ACM=∠AEM=60°,∠AOE=MOE, ∴∠1=∠3.∴∠2=∠3.……………………………5分 ∵∠BHE=60°,∴∠AHE=120°. ∵∠ECM=120°.∴∠AHE=∠ECM.……………………………6分 ∵AH=CE,∴△AHE≌△ECM(AAS).
∴AE=EM. ……………………………7分
(或根据一线三等角证△ABE∽△ECO,得∠BAE=∠CEM, 再证∠AHE=∠ECM,得△AHE≌△ECM(ASA)) 想法二:
∵在△AOE和△COM中, ∠ACM=∠AEM=60°, ∠AOE=∠COM,
∴∠EAC=∠EMC.……………………………3分 又∵对称△ACE≌△FCE,
∴∠EAC=∠EFC, AE=EF.…………5分 ∴∠EMC=∠EFC.
∴EF=EM.∴AE=EM.…………7分 想法三:
∵将线段BE绕点B顺时针旋转60°,
∴可证△ABE≌△CBF(SAS).…………………2分 ∴∠1=∠2 AE=CF.…………………3分 ∵∠AEM=∠CBA=60°,
∴∠1=∠CEM.∴∠2=∠CEM.∴EM//CF.…………4分 ∵∠CBF=60°,BE=BF,∴∠BEF=60°,
0
∴∠MCE=∠CEF=120.∴CM//EF.…………………5分 ∴四边形MCFE为平行四边形.
∴CF=EM.∴AE=EM.…………………7分 4.28.(本小题满分7分)
(1)补充图形正确……………………………………………1分 PM3……………………………………………2分 ?PN3AA1H2BE(2)O3MGCAA1BEOMGOCFCMBFE2Gy43C21B–1DA1234O–1x(2)作出示意图……………………………………………3分
BMPCN
思路:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F………………………4分 由PF⊥BC和∠ABC=90o可以得到AB∥PF,∠PFC=90o进而得到
∠A=∠FPC;由∠PFC=∠AEP= 90o, AP=PC可以得到 △AEP ≌△PFC,进而推出AE=PF;
由点P处的两个直角可以得到∠EPM=∠FPN,
PFPN
进而可以得到△MEP ∽△NPF,由此可以得到PE =PM 等量代换可以得到
PMPE;在Rt△AEP中 ?PNAEBMAEPFCPEPM,可以得到tan?A??tan23?………………7分 AEPN5.28.(1)依据题意,画图正确,如图1. ····················································································· 1
(2)证明:如图1,由题意,得AD=AE,∠DAE=90°.
∵∠BAC=90°,
∴∠CAD+∠BAD=∠BAE+∠BAD=90°. ∴∠CAD=∠BAE. ··········································································································· 2 ∵AB=AC,
∴△CAD≌△BAE. ·········································································································· 3
∴CD=BE. ·············································································································· 4
(3)证明:①如图2,
∴∠ACD=∠ABE. ································································································· 5 ∵∠AFC=∠GFB. ∴△ACF∽△GBF. ··········································································································· 6
②当∠EDB=90°时,如图3,AB:BD?5:2; ································· 7 当∠BED=90°时,如图4,AB:BD?5:2. ······································ 8
BEAEAGD图1
FDCB图2
CEAG
(G)FD图3
EFADCBB图4
C6.28.(本小题满分6分)
(1)如图1中,过点A作AH⊥BC于H. ∴∠AHB=∠AHC=90°,
在Rt△AHB中,∵AB=52,∠B=45°, ∴BH=ABcosB=5, AH=ABsinB=5,
,
在Rt△AHC中,∵∠C=30°, ∴AC=2AH=10,CH=ACcosC=5
∴BC=BH+CH=5+53. ………………………………3分
(2)①证明:如图1中,过点A作AP⊥AB交BC于P,连接PE,
∴△ABD≌△APE,
∴BD=PE,∠B=∠APE=45°, ∴∠EPB=∠EPC=90°, ∵∠C=30°, ∴CE=2PE, ∴CE=2BD. ②
…………………………5分
3?1…………………………6分 27.28.解:(1)
……………………..(1分)
CF3;……………………..(2分) ?AE3AE与EF的数量关系为AE=EF……………………..(3分)
证明:(2)连接AF,EF与AC交于点G.
?在等边△ABC中,CD是它的外角平分线.
ADFGBEC?∠ACF=60°=∠AEF,
?∠AGE=∠FGC,
?△AGE∽△FGC……………………..(5分)
GEGA? ?GCGF
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库北京初三数学第一学期几何大题期末专练(2)在线全文阅读。
相关推荐: