77范文网 - 专业文章范例文档资料分享平台

人教版高中数学高一《函数的解析式》教学设计附反思

来源:网络收集 时间:2018-12-06 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

函数的单调性与导数

教学内容: 人教版《普通高中课程标准实验教科书数学》选修1-1 P 97—101 教学目标:

(1)知识目标:能探索并应用函数的单调性与导数的关系求单调区间,能由导

数信息绘制函数大致图象。

(2)能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。

(3)情感目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,

引导学生养成自主学习的学习习惯。

教学重点:探索并应用函数单调性与导数的关系求单调区间。 教学难点:利用导数信息绘制函数的大致图象。 教学方法:发现式、启发式 教学手段:多媒体课件等辅助手段

教具、学具准备:CAI课件一套、学生每人一份实验表格及一支牙签 教学过程预设: 教学环节 师生活动 设计意图 以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。 一、回顾与思考 1.判断函数的单调性有哪些方法? (引导学生回答“定义法”,“图象法”。) 2.比如,要判断 y=x2 的单调性,如 何进行?(引导学生回顾分别用定义法、提 图象法完成。) 3.还有没有其它方法?如果遇到函数: y=x3-3x判断单调性呢?(让学生短时 问 间内尝试完成,结果发现:用“定义法”, 作差后判断差的符号麻烦;用 “图象法”,图象很难画出来。) 4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。 二、观察与表达 问:函数的单调性和导数有何关系呢? 教师仍以y=x2为例,借助几何画板动态演示, 让学生记录结果在课前发的表格第二行中: (探索函数的 单 切线 导数 单调性和导数函数及图象 调 斜率 的正 的关系) 性 k的 负 正负 y y = x2 o x y y = f(x) o a y b x y = f(x) o a b x 问:有何发现?(学生回答) 问:这个结果是否具有一般性呢? 我们来考察两个一般性的例子: (教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。) 问:能否得出什么规律? 让学生归纳总结,教师简单板书: 在某个区间(a,b)内, 若f ' (x)>0,则f(x)在(a,b)上是增函数; 若f ' (x)<0,则在f(x)(a,b)上是减函数。 教师说明: 要正确理解“某个区间”的含义,它必需是定义域内的某个区间。 1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。 2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。 3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。这一点将在例1的变式3具体体现。 4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后续课程中给学生补充。 三、知 识 应 用 1. 应 用 导 数 求 函 数 的 单 调 区 间 1.函数y=x-3在[-3,5]上为______函数(填基“增”或“减”)。(学生口答) 础 训2.函数y=x2-3x在[2,+∞)上为______函数,练 在(-∞,1]上为______函数,在[1,2]上为______ 函数(填“增”或“减”或“既不是增函数,也不是 减函数”)。 理 解例1.求函数y=3x2-3x的单调区间。 训(引导学生得出解题思路:求导 → 练 令f ' (x)>0,得函数单调递增区间,令f ' (x)<0, 得函数单调递减区间 → 下结论) 变式1:求函数y=3x3-3x2的单调区间。 (竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。) 巩变式2:求函数y=3e x -3x单调区间。 固(学生上黑板解答) 提 高 1 变式3:求函数y?的单调区间。 x为加强学生对结论的理解与记忆,设计了两个基础训练题。由于思维定势,学生可能仍用以前的方法,这里教师要引导学生用导数法求解。 求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式: 设计例1可引导学生得出用导数法求单调区间的解题步骤 设计变式1及竞赛活动可以激发学生的学习热情,让他们学会比较,并深刻体验导数法的优越性。 设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。 设计变式3是可使学生体会考虑定义域的必要性 例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。 学1° 什么情况下,用“导数法” 求函数单调性、 生 单调区间较简便? 通过这一总结,让学生小 2° 试总结用 “导数法” 求单调区间的步骤?明确导数法求单调区间的结 (教师强调第一步应求定义域) 适用类型及解题步骤。 函数y=xcosx-sinx在下列哪个区间内 强是增函数( B ) (04年全国理) 化?3?A. (,) B. (?,2?) 训22 练 3?5?C. (,) D. (2?,3?) 22 2. 师:利用导数的正负可以判断函数的增减性,应 求函数的单调区间,同样,利用导数的正负用 例还可以绘制函数的大致图象。 导 题 数 讲例2.已知导函数的下列信息: 信 解 当23或x<2时,f ' (x)>0; 确 当x=3或x=2时,f ' (x)=0。 定 试画出函数 f ( x )图象的大致形状。 函 数 (分析题意后让学生尝试画图,并就学生中大 出现的两类答案进行投影分析。) 致 y y = f(x) y y = f(x) 图 象 o 2 3 x o 2 3 x 问:两图有何异同? (引导学生得出:) 相同:都满足在(2,3)上递减,在(-∞,2) 和(3,+∞)上递增;主要不同:在A、B处即在 x=2和x=3处,左图是平滑的,右图是折点。 追问:是否都行呢? 师分析:由于在A、B两点处f ' (x)=0,根据 前面的学习,我们知道,导数为零的点的附 近图象应该几乎没有升降变化,而右图在这 两处升降变化很大,因此,右图不正确。 师:这里A,B两点比较特殊,书上称之为“临 界点”,关于“临界点”更深入的知识,我们下 节课再讨论。 刚才f ' (x)的信息是用文字形式给出,f ' (x)的 信息也可以用图形给出,比如: 选用了此高考题可以进一步加强学生对用“导数法”求单调区间的掌握。同时由于此题难度不太大,对基础中下的学生可起到激发信心的作用。 1.本题有一定的抽象性,是本节的难点,这正是将课本两个例题调换顺序讲解的原因。 2.本题是一道开放性的题目,学生的答案也许是“百花齐放”,图象可能向“内”弯曲,可能向“外”弯曲,也可能是条直线。教师就学生中主要出现的两类答案进行投影分析,提出“折点”问题, 解决办法: 让学生回顾前面讲过的(如:教材P84例2)导数为零的点附近图象几乎没有升降变化,而“折点”附近图象升降变化很大,对于基础不是特别好的班级,课堂上也只能这样点到为止。 新课程的学习提出“学会看图是21世纪成年人必须具备的能力。”本课就是个机会,通过此题进一步培养学生看图及数形结合的能力。 巩(04浙江理工类) 固设f ' (x)是函数f (x) 的导函数,f ' (x)的图象如训下,则f (x) 的图象最有可能的是( C ) 练 (教师引导学生分析解答) y y= f ' (x) o 1 2 x y y= f (x) o 1 (A) 2 x y y= f (x) 1 o (B) 2 x y y= f (x) 2 o 1 (C) x y y= f (x) 1 o 2 (D) 让学生按这一模式进行小结,培养学生学习——总结——学习——反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。 x 通过这堂课的研究,你明确了 ,你的 收获与感受是 ,你还存在的疑四、心得与体会 惑之处有 。 五、作业设计 必做题:课本 :P101 4, P107 A组1 选做题:函数f(x)?x3?ax2?bx?c,其中a,b,c为常数,当a2?3b?0时,f(x)在R上( A )(A)增函数 (B)减函数 (C)常数(D)既不是增函数也不是减函数 将作业设计为必做题与选做题可使不同基础的学生得到相应的训练和提高。 六、板书计划 课题 结论 板演 解题步骤 投影

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库人教版高中数学高一《函数的解析式》教学设计附反思在线全文阅读。

人教版高中数学高一《函数的解析式》教学设计附反思.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/346405.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: