第二章
2-1 解:
(1): F(S)?L[(4t)?(t)]?L[5?(t)]?L[t?1(t)]?L[2?1(t)] ?0?5?(2): F(S)?1212??5?? S2SS2S3s?5 22(s?25)1?e??s(3): F(S)?2
s?1(4): F(S)?L{[4cos2(t??s6?)]?1(t?)?e?5t?1(t)} 66?s6??? ?4Se14Se1???
s2?22S?5s2?4S?5e?2se?2s?6?(5): F(S)?0?0?6? SS(6): F(S)?L[6cos(3t?45?90)?1(t??S4???4)]
?S4????6Se6Se?L[6cos3(t?)?1(t?)]?2?
44S?32S2?9
(7): F(S)?L[e?6tcos8t?1(t)?0.25e?6tsin8t?1(t)]
?S?62S?8 ??22222(S?6)?8(S?6)?8S?12S?100(8): F(S)?2?2-2
解:
(1): f(t)?L?1(259e ??s?20(s?20)2s2?9?s6??12?)?(?e?2t?2e?3t)?1(t) S?2S?31(2): f(t)?sin2t?1(t)
21(3): f(t)?et(cos2t?sin2t)?1(t)
2e?s)?et?1?1(t?1) (4): f(t)?L(S?1?1(5): f(t)?(?te?t?2e?t?2e?2t)?1(t)
81515?t(6): f(t)?L?1(152)?815e?2sin15t?1(t) (S?12)2?(1521522)(7): f(t)?(cos3t?13sin3t)?1(t)
2-3 解:
(1) 对原方程取拉氏变换,得:
S2X(S)?Sx(0)?x??(0)?6[SX(S)?x(0)]?8X(S)?1S 将初始条件代入,得:
S2X(S)?S?6SX(S)?6?8X(S)?1S
(S2?6S?8)X(S)?1S?S?6177X(S)?S2?6S?1S(S2?6S?8)?8S?4S?2?8S?4 取拉氏反变换,得:
x(t)?1?74e?2t?78e?4t8
?(2) 当t=0时,将初始条件x(0)?50代入方程,得:
50+100x(0)=300 则x(0)=2.5
对原方程取拉氏变换,得: sx(s)-x(0)+100x(s)=300/s 将x(0)=2.5代入,得:
SX(S)-2.5?100X(S)?300S
X(S)?2.5S?30030.S(S?100)?s?5s?100
取拉氏反变换,得:
x(t)?3-0.5e-100t
2-4
解:该曲线表示的函数为:
u(t)?6?1(t?0.0002)
则其拉氏变换为:
6e?0.0002sU(s)?s
- 1 -
2-5 解:
3dy0(t)?2ydx1(t)dt0(t)?2dt?3xi(t) y0(0)?xi(0)?0将上式拉氏变换,得:
3SY0(S)?2Y0(S)?2SXi(S)?3Xi(S)(3S?2)Y0(S)?(2S?3)Xi(S)
Y0(S)2S?3X(S)?i3S?2?极点 S?-23 零点 S3pZ?-2
又当 xi(t)?1(t)时
Xi(S)?1SYY0(S)2S?310(S)?X?Xi(S)?S?2?S i(S)3?y2S?30(?)?limS?Y0(S)?s?0limS?s?03S?2?13S?2?y0(0)?limS?Y0(S)?S?2S?3
s??lims??3S?2?12S?32-6 解:
(a)传递函数:
GG2G3C1?1?G3H3?G2G3H2G1G2GR?31?GG?G 2G31?1?3H3?G2G3H2?G1G2G3H11?G?G?H13H32G3H2
- 2 -
(b)传递函数:
(c)传递函数:
(d)传递函数:
G1G2C ?R1?G1H1?G2H2?G1G2H1H2?G1G2H32-7 解:
通过方块图的变换,系统可等价为下图:
- 3 -
2-8 解:
2-9
- 4 -
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库控制工程基础第三版习题答案_清华大学出版社在线全文阅读。
相关推荐: