77范文网 - 专业文章范例文档资料分享平台

外文翻译--小波分析在信号处理中的应用.

来源:网络收集 时间:2018-11-17 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

毕业设计(论文)外文资料翻译

专 业: 班 级: 姓 名: 学 号:

指导教师评语: 签名: 年 月 日

一 小波研究的意义与背景

在实际应用中,针对不同性质的信号和干扰,寻找最佳的处理方法降低噪声,一直是信号处理领域广泛讨论的重要问题。目前有很多方法可用于信号降噪,如中值滤波,低通滤波,傅立叶变换等,但它们都滤掉了信号细节中的有用部分。传统的信号去噪方法以信号的平稳性为前提,仅从时域或频域分别给出统计平均结果。根据有效信号的时域或频域特性去除噪声,而不能同时兼顾信号在时域和频域的局部和全貌。更多的实践证明,经典的方法基于傅里叶变换的滤波,并不能对非平稳信号进行有效的分析和处理,去噪效果已不能很好地满足工程应用发展的要求。常用的硬阈值法则和软阈值法则采用设置高频小波系数为零的方法从信号中滤除噪声。实践证明,这些小波阈值去噪方法具有近似优化特性,在非平稳信号领域中具有良好表现。

小波理论是在傅立叶变换和短时傅立叶变换的基础上发展起来的,它具有多分辨分析的特点,在时域和频域上都具有表征信号局部特征的能力,是信号时频分析的优良工具。小波变换具有多分辨性、时频局部化特性及计算的快速性等属性,这使得小波变换在地球物理领域有着广泛的应用。随着技术的发展,小波包分析(Wavelet Packet Analysis)方法产生并发展起来,小波包分析是小波分析的拓展,具有十分广泛的应用价值。它能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对离散小波变换没有细分的高频部分进一步分析,并能够根据被分析信号的特征,自适应选择相应的频带,使之与信号匹配,从而提高了时频分辨率。小波包分析(wavelet packet analysis)能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对小波分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带,使之与信号频谱相匹配,因而小波包具有更广泛的应用价值。利用小波包分析进行信号降噪,一种直观而有效的小波包去噪方法就是直接对小波包分解系数取阈值,选择相关的滤波因子,利用保留下来的系数进行信号的重构,最终达到降噪的目的。运用小波包分析进行信号消噪、特征提取和识别是小波包分析在数字信号处理中的重要应用。

二 小波分析的发展与应用

小波包分析的应用是与小波包分析的理论研究紧密地结合在一起的。近年来,小波包的应用范围也是越来远广。小波包分析能够把任何信号映射到一个由基本小波伸缩、平移而成的一组小波函

数上去。实现信号在不同时刻、不同频带的合理分离而不丢失任何原始信息。这些功能为动态信号的非平稳描述、机械零件故障特征频率的分析、微弱信号的提取以实现早期故障诊断提供了高效、有力的工具。

(1)小波包分析在图像处理中的应用

在图像处理中,小波包分析的应用是很成功的,而这一方面的著作和学术论文也特别多。二进小波变换用于图像拼接和镶嵌中,可以消除拼接缝。利用正交变换和小波包进行图像数据压缩。可望克服由于数据压缩而产生的方块效应,获得较好的压缩效果。利用小波包变换方法可进行边缘检测、图像匹配、图像目标识别及图像细化等。

(2)小波包分析在故障诊断中的应用

小波包分析在故障诊断中的应用已取得了极大的成功。小波包分析不仅可以在低信噪比的信号中检测到故障信号,而且可以滤去噪声恢复原信号,具有很高的应用价值。小波包变换适用于电力系统故障分析,尤其适用于电动机转子鼠笼断条以及发电机转子故障分析。用二进小波Mallat算法对往复压缩机盖振动信号进行分解和重构,可诊断出进、排气阀泄漏故障。利用小波包对变速箱故障声压信号进行分解,诊断出了变速箱齿根裂纹故障等。

(3)小波包分析在语音信号处理中的应用

语音信号处理的目的是得到一些语音参数以便高效地传输或存储。利用小波包分析可以提取语音信号的一些参数,并对语音信号进行处理。小波包理论应用在语音处理方面的主要内容包括:清浊音分割、基音检测、去躁、重建与数据压缩等几个方面。小波包应用于语音信号提取、语音台成语音增加波形编码已取得了很好的效果。

三 基础知识介绍

近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。这里希望利用小波的自身特性,在降低噪声影响的同时,尽量保持图像本身的有用细节和边缘信息,从而保证图像的最佳效果。

小波合成

连续小波变换是一种可逆的变换,只要满足方程2。幸运的是,这是一个非限制性规定。如果方程2得到满足,连续小波变换是可逆的,即使基函数一般都是不正交的。重建可能是使用下面的重建公式:

公式1小波逆变换公式

其中C_psi是一个常量,取决于所使用的小波。该重建的成功取决于这个叫做受理的常数,受理满足以下条件:

公式2受理条件方程

这里 psi^hat(xi) 是 FT 的psi(t),方程2意味着psi^hat(0) = 0,这是:

公式3

如上所述,公式3并不是一个非常严格的要求,因为许多小波函数可以找到它的积分是零。要满足方程3,小波必须振荡。

连续小波变换

连续小波变换作为一种替代快速傅里叶变换办法来发展,克服分析的问题 。小波分析和STFT的分析方法类似,在这个意义上说,就是信号和一个函数相乘,{它的小波},类似的STFT的窗口功能,并转换为不同分段的时域信号。但是,STFT和连续小波变换二者之间的主要区别是:

1、Fourier转换的信号不采取窗口,因此,单峰将被视为对应一个正弦波,即负频率是没有计算。

2、窗口的宽度是相对于光谱的每一个组件变化而变化的,这是小波变换计算最重要的特征。 连续小波变换的定义如下:

公式4

从上面的方程可以看出,改变信号功能的有两个变量,τ和s,分别是转换参数和尺度参数。psi(t)为转化功能。

小波包分析的基本原理

目前大多数数字图像系统中,输入图像都是采用先冻结再扫描方式将多维图像变成一维电信号,再对其进行处理、存储、传输等加工变换。最后往往还要在组成多维图像信号,而图像噪声也将同样受到这样的分解和合成。噪声对图像信号幅度、相位的影响非常复杂,有些噪声和图像信号是相互独立不相关的,而有些则是相关的,并且噪声本身之间也可能相关。因此要有效降低图像中的噪声,必须针对不同的具体情况采用不同方法,否则就很难获得满意的去噪效果。一般图像去噪中常见的噪声有以下几种:

1) 加性噪声:加性噪声和图像信号强度是不相关的,如图像在传输过程中引进的“信道噪声”电视摄像机扫描图像的噪声等。这类带有噪声的图像可看成是理想的没有被噪声“污染”的图像与噪声。

2) 乘性噪声:图像的乘性噪声和图像的加性噪声是不一样的,加性噪声和图像信号强度是不相关的,而乘性噪声和图像信号是相关的,往往随着图像信号的变化而发生变化,如飞点扫描图像中的噪声、电视扫描光栅、胶片颗粒噪声等。

3) 量化噪声:量化噪声是数字图像的主要噪声源,它的大小能够表示出数字图像和原始图像的差异程度,有效减少这种噪声的最好办法就是采用按灰度级概率密度函数选择量化级的最优量化措施。

4) “椒盐”噪声:此种噪声很多,例如在图像切割过程中引起的黑图像上的白点、白图像上的黑点噪声等,还有在变换域引入的误差,在图像反变换时引入的变换噪声等。

实际生活中还有多种多样的图像噪声,如皮革上的疤痕噪声、气象云图上的条纹噪声等。这些噪声一般都是简单的加性噪声,不会随着图像信号的改变而改变。这为实际的去噪工作提供了依据。 2.图像去噪效果的评价

在图像去噪的处理中,常常需要评价去噪后图像的质量。这是因为一个图像经过去噪处理后所还原图像的质量好坏,对于人们判断去噪方法的优劣有很重要的意义。目前对图像的去噪质量评价主要有两类常用的方法:一类是人的主观评价,它由人眼直接观察图像效果,这种方法受人为主观因素的影响比较大。目前由于对人的视觉系统性质还没有充分的理解,对人的心理因素还没有找到定量分析方法。因此主观评价标准还只是一个定性的描述方法,不能作定量描述,但它能反映人眼的视觉特性。另一类是图像质量的客观评价。

调试环境-MATLAB开发平台

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库外文翻译--小波分析在信号处理中的应用.在线全文阅读。

外文翻译--小波分析在信号处理中的应用..doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/279751.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: