1xa1?anx22??xnn(2)Dn?1?x??1?1a1?a1??0(其中a1,?,an互不相同)
an?ann解:(1)要使原方程有解,观察可知只有两种可能: ①当2?x2?1时,即x??1时,D4(x)?0 ②当9?x2?5时,即x??2时,D4(x)?0 综上所述,原方程的解为1,-1,2,-2
1xa1?anx22??xnn1x?x21a1a1?a1n2???1anan??a1?x??a2?x???an?x???ann21?j?i?n(2)Dn?1?x??1?1a1?a1?a?ai?aj??0
an?nn?xn?由于a1,?,an互不相同,故?1?j?i?n?ai?aj??0,因此原方程化为?a1?x??a2?x???an?x??0
显然,该方程有n个解即x1?a1,x2?a2,?,xn?an
?1510471?93?816712?31-8. 设D?,试证:A41?A42?A43?A44?0
证明:根据拉普拉斯定理可知1?A41?1?A42?1?A43?1?A44?0
即A41?A42?A43?A44?0
1-9. 用Cramer法则解下列方程组:
?x1?x2?x3?x4?0?2x1?x2?5x3?x4?8?x2?x3?x4?x5?0???x1?3x2?6x4?9?(1)? (2)?x1?2x2?3x3?2
?2x2?x3?2x4??5?x?2x?3x??234?x?4x?7x?6x?0?2234?1??x3?2x4?3x5?221?324?50?1?71?50?1?7解:(1)该方程组的系数行列式为D?101?8????69? ?27,常数向量?????5?2??60??18D1?9?501?324?50?1?71?626?81 D2?210189?50?626??108
2D3?101?x1?D1D1?32489?501?626D2D??4,?x3?2??27 D4?101D3D1?324?50?1?789?50D4D110?27
?3,?x2???1,?x4?10112113?1 010?0???0???16,常数向量???2?
(2)该方程组的系数行列式为D?101230???2?00123???2??01110101101100111100111010D1?22300?16,D2?12300??16,D3?122?212300?223001?2201230212300211100111100110101110D4?12320??16,D4?12302?16 012?200123?20012300122?x1?D1D?1,x22?DD??1,x3?D3D?1,xD44?D??1,x55?DD?1
1-10. (1)问?取何值时,下列齐次方程组有非零解?
?2x1??x2?2x3?0??3x1?x2?x3?0 ???x1?x3?0(2)设a,b,c,d是不全为零的的实数,求证方程组
?ax?cx?1?bx23?dx4?0?bx1?ax2?dxcx?3?4?0?cx1?dx2?ax只有零解
3?bx4?0??dx1?cx2?bx3?ax4?02?2解:(1)要使原方程组有解,由定理1.8知311??2???2?0 ?0?1解得?1?1或?2??2。
?abcd??(2)原方程组的系数矩阵为A??b?ad?c????c?d?ab?, ?dc?b?a??101100?16,3023 ?a?bT由于AA???c??db?a?dccd?a?bd??a???cb??b??c???a??db?ad?cc?d?abd??c?? ?b???a???? ??2222?a?b?c?d??a2?b2?c2?d2??????a?b?c?d2222a?b?c?d2222故
a2?b2?c2?d22A?A2?AA?AAT?AAT?a?b2?c2?d2??a2?b2?c2?d2?2
由于a,b,c,d是不全为零的的实数,故A??a2?b2?c2?d2?2?0 因此,原方程组只有零解
a2?b2?c2?d2a2?b2?c2?d2
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库线代第一章A部分题目参考答案(2)在线全文阅读。
相关推荐: