77范文网 - 专业文章范例文档资料分享平台

泵站设计计算书

来源:网络收集 时间:2020-02-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

泵站设计计算书

第一章: 泵站兴建缘由及概况 1.兴建缘由:

博斯腾湖位于我国新疆巴音郭楞蒙自治州境内。其上游为开都河、下游为孔雀河。故博斯腾湖既是开都河水系和焉耆盆地地面径流的归宿地,又是孔雀河的发源地。多年以来孔雀河水道狭窄,芦苇丛生,博斯腾湖水出流不畅,沿岸湖宽水浅,湖面蒸发损失很大(年蒸发量约为10亿m3),因而造成孔雀河灌区农业用水不足,整个焉耆盆地地下水位升高,土壤盐渍化严重。因此巴音郭楞蒙古自治州粮食产量一直较低。每年均由国家调进粮食。由于孔雀河枯水季节流量小,故不能满足下游两个水电站发电的需水量。其中铁门关水电站5×8500kw机,只能运行一台,石灰窑水电站2×3000+2×3200kw机也不能满足机组的发电量。同时由于湖面蒸发损失的增加,近20年以来,博湖的水质也发生了很大的变化,湖水的矿化度1958年为0.383~0.390g/L,而1981年6~8月的平均矿化度为1.8g/L。22年中平均每年增高0.064g/L博湖已由淡水湖变为微咸湖,水质变坏的趋势,近几年更为严重。为此,决定在博湖的西南面,孔雀河口以东约两公里处建设泵站,目的在于:1.根据焉耆盆地治碱、排水,降低地下水位的要求,保证湖水位低于1046m高程;2.调节孔雀河流量,满足库尔勒和塔里木两灌区灌溉用水的需要;3.保证铁门关水电站和石灰窑电站枯水期的发电流量,满足负荷要求,冬季不要限电;4.促进湖水循环,防止湖水继续咸化,同时限制地下水位升高,减轻土壤盐渍化程度。博湖泵站建成后,可兼收排水、灌溉、发电、保护水质四方面的效益,一举而数得。

2.基本资料的分析整理。 一)、地形资料

博斯腾湖附近水系地形图(1/500)。 二)、地质资料

泵站站址处:

地表下0-2m,厚2m,亚砂土(干容重γ干=1.5t/m3); 地表下2-12m厚10m细砂土(干容重γ干=1.55 t/m3);贯入10cm

数达60次;

地表下12-112m厚100m,亚砂土(干容重γ干=1.8t/m3),贯入3cm,击数为70次;

地下水位1047.08-1047.78m,低于湖水位,由湖水补给。

细砂渗透系数K=4.08-10.00m/昼夜,地下水矿化度高达24.25-26.037g/L,并含有侵蚀性CO2,CO2含量为10.75-161.75mg/L,对普通水泥有侵蚀性。博湖水矿化度如前所述,不含CO2。 三)、气象资料

1.山间盆地与峡谷区:海拔3000-4500m,气候严寒,年平均气温-5.1℃,年最低气温-40.5℃(发生在一月)。雨量多,年降水量300mm,集中于6、7、8三个月。冬季长5个月,最大动土深4.4m,最大风速20m/s,多为西北风。

2.焉耆盆地:海拔1048-1200m,气候冰爽,年平均气温8.6℃,年最高气温38.8℃(发生在八月),最低气温-35.2℃(发生在一月),无霜期平均为145天,日照时树平均为3174小时,年降水量66mm,年蒸发量1983mm,最大风速20m/s,多为西北风,积雪期31天,冻土深1.05 m,不宜种冬麦。

3.库尔勒平原:海拔800-950m,受塔里木沙漠气候影响,大陆性气候显著,冬寒夏热,年平均气温10.7℃,年最高气温43.1℃(发生在八月),年最低气温-32.7℃(发生在一月)。年降水量61.2mm,年蒸发量2668.3mm,日照时数为3001小时,无霜期长,平均为195天,适宜种植棉花及复种玉米。最大风速16m/s,多为西北风,并有来自沙漠的旱风,出现在4-5月份,积雪期32天,冻土深0.65m。 四)、水文资料 1.水位资料

(1)泵站最高下水位 1048.0m; (2)泵站设计下水位 1043.0m; (3)泵站最低下水位 1043.0m; (4)出水池校核水位 1050.2m; (5)出水池设计水位 1050.0m; (6)出水池最低水位 1047.4m。 2.流量资料

设计流量为40m3/s。

五)、建筑物等级

博湖泵站是铁门关、石灰窑两级电站的水源泵站,并兼负降低博斯腾湖水位、灌溉库尔勒地区农田的任务,参照铁门关水电站那个主体

建筑物等级(Ⅱ级),据此确定本泵站主体建筑物按Ⅱ级建筑设计,其它附属建筑物按Ⅲ级设计。

六)、其他资料

1.地震烈度:已建的铁门关水电站采用8度,博斯腾湖泵站工程也按8度设计。 2.能源:泵站用电由铁门关水电站供给,在铁门关水电站的110kV升压站接网,用53公里110kV架空输电线路输送至本站。

3.交通、建材:本地交通方便,陆路可通汽车,水路可通船舶;建筑材料可以保证供应,砂石料更可就地取材。 第二章:工程布置 1.站值的确定:

根据本地区具体条件,选择站的面积小,拆迁房屋较少,工程造价低。考虑到水流顺直,地基稳定,防洪安全,交通便利,施工方便等要求,站址确定如图所示,在该区域地形开阔、岸坡适宜、有利于工程布置,并且地质良好,能满足正面进水和正面出水的要求。 2.设计流量及设计扬程的确定:

一、设计扬程 1.实际扬程

实际最大扬程:Hmax=▽出max-▽进min =1050.2-1043.0=7.2 m

实际设计扬程:H设= ▽出设 -▽进设=1050.0-1043.0=7.0 m

实际最小扬程:Hmin=▽出设 -▽进max=1048.0-1047.4=0.6 m 2.初估扬程

H=(1+K)H实 (k在最大扬程时取0.3,设计扬程及最小扬程取0.2)

设计扬程计算如下:

Hmax=(1+0.2)×7.2=8.64 m H设=(1+0.2)×7.0=8.4 m Hmin=(1+0.2)×0.6=0.72m 二、设计流量 Q设=40 m3/s

3. 主机组选型及台数确定 一、主水泵 1.水泵选型

博斯滕湖水泵站属于低扬程、大流量的情况,且扬程变化较大,故初步选用全调节轴流泵。根据设计扬程选择水泵型号。 选型方案列表如下: 泵型 扬流叶片效轴功转轮转台程 量 安放率 率 直径速数 (m(m角(%(kw(mmr/m) 3(°) ) ) in /s) ) 方1600zlbq-6 8.4 6.4 0 82.600 1540 300 6 案2 一: 方案二: 方案三: 1600zlq8.5-7.8.4 7.6 0 5 1400zlb(q)5.58.4 5.3 0 -7.5 85 675 1450 300 5 86 450 1200 375 7 以上方案所选泵的台数为主泵台数设置一台备用泵 方案的比较:对于方案三机组台数较多不经济,而且流量与设计流量相差超过5%故舍弃,对于方案一虽然台数流量基本满足条件但台数是偶数台不利于对称开启,综合考虑选择第二种方案的泵型。 配套电机的选择:TL800-20/2150型电动机。 第三章 枢纽建筑物设计 1.泵房的型式:

泵房结构型式多样,常采用的有分基型、干室型、湿室型和块基型。其中块基型适用于大中型水泵站,该泵房结构整体性好,可以适应各种地基条件,最适合博斯腾湖泵站的设计情况。

块基型泵房按其是否直接挡水及与堤坊的连接关系可分为堤身式和堤后式两种。堤身式出水流道短,建筑物等级高,一般与防洪标准一致,扬程较小时采用此形式比较经济,因此将其作为首选方案。堤身式泵房又因其出水流道的不同而分为堤身虹吸式和堤身直管式和堤身屈膝式。堤身虹吸式泵房虽然断面复杂,施工较为困难,但运行可靠,检修容易,为确保安全可靠采用该方案比较合适。 2.进水流道的设计:

1)转轮中心线至底板的距离H与转轮直径D的比值H/D越大则进口流速分布越均匀,同时相应增加工程难度与造价故暂定H/D=2 2)进口流速宜取0.8—1.0m/s初步确定为1m/s

3)流道进口至机组轴线水平长度(进口段长度)L较长,则进水流态

较稳定,能得到较高的水力效率但较长的L会使泵房宽度增加。从而增加工程投资。

4)进水流道底板一般未平底,但往往将流道进口段底板向上翘起,其上翘角为5°--12°,一般多采用8°--10°

5)进水流道顶板的仰角一般根据进水池最低水位高程确定,要求顶板上缘淹没在最低水位,国内泵站多采用肘形进水流道,其α角多为20°左右。

6)进水流道进口段出口断面高度hk不宜过大,以免引起脱流通常取值范围以(0.8—1.1)D为宜。

7)中部弯曲段的内外侧一般分为不同心圆弧构成。弯曲段内外侧的曲率半径不宜太小,外侧半径RO以大致等于D为宜,内侧半径R2以(0.35—0.45)D为宜。

H/D=2.0 H=2900mm L/D=3.5 L=5075mm B/D=2.0 B=2900mm R0/D=1.0 R0=1160mm R2/D=0.35 R2=507.5mm α取20°β取0°(一般为平底,故取0°)其中D由水泵直径确定为1450mm 进水流道的图如图所示:校核情况如下表所示: 3.出水流道的设计:

一)流道类型

出水流道分为虹吸式、直管式、屈膝式、猫背式以及双向出水等几种。其中虹吸式和直管式较为常用。直管式出水流道设计施工简单,但由于其断流采用拍门或快速闸门,水流速度大,导致水力损失也较大,而且拍门受工艺限制常有事故发生,运行不如虹吸式可靠。虹吸式出水流道水头损失小,断流方式简单可靠,维修操作工作量小。适用于出水池水位变幅不大的立式或斜式低扬程泵站,综合考虑以上因素,决定采用虹吸式出水流道。 二)尺寸确定

出水流道采用虹吸式出水流道一般由扩散段出水弯管,上升段,驼峰段,下降段,出口段等部分组成,分别确定各部分的形状和尺寸。 1.驼峰段

驼峰断面平均流速V=2.4 (取值范围在2.0 ~ 2.5 m/s内)

驼峰底部高程▽底 = ▽高 + δ= 1050.2 + 0.2 =1050.4 m 其中:▽高是出水池最高水位,为1050.2米 ;δ为安全超高,一般在0.1 ~ 0.3m之间,这里选取为0.2米)

驼峰断面面积A =Q/V=(7.6/2.4)=3.2m2

驼峰断面高度h=0.6D=0.6*160=96cm (h在出水弯管出口直径的

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库泵站设计计算书在线全文阅读。

泵站设计计算书.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/783510.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: