南昌市高中新课程训练题(直线、平面、简单几何体1)
命题:莲塘一中 李鸿斌
一、选择题(本小题共12小题,每小题5分,共60分) 1. 若
是平面
外一点,则下列命题正确的是
(A)过垂直
只能作一条直线与平面相交 (B)过可作无数条直线与平面
(C)过平行
只能作一条直线与平面平行 (D)过可作无数条直线与平面
2.在空间四边形如果
、
中,、、、上分别取、、、四点,
交于一点,则( )
A.一定在直线上 B.一定在直线上
C.在直线在
上
或上 D.既不在直线上,也不
3.如图S为正三角形所在平面ABC外一点,且SA=SB=SC=AB,E、F分别为
SC、AB中点,则异面直线EF与SA所成角为( )
A.90? B.60? C.45? D.30?
4.下列说法正确的是( )
A.若直线平行于平面内的无数条直线,则
B.若直线在平面外,则
C.若直线,,则
D.若直线,,则直线就平行于平面内的无数条直线
5.在下列条件中,可判断平面与平面平行的是( )
A.、都垂直于平面
B.内存在不共线的三点到平面的距离相等
C.、是内两条直线,且,
D.、是两条异面直线,且,,,
6 若为一条直线,
②
正确的命题有( )
为三个互不重合的平面,给出下面三个命题:①
;③
,其中
A. 0个 B. 1个 C. 2个 D. 3个
7.把正方形ABCD沿对角线AC折起,当点D到平面ABC的距离最大时,直线BD和平面ABC所成角的大小为 ( )
A.90? B.60? C.45? D.30?
8.PA、PB、PC是从点P引出的三条射线,每两条射线的夹角均为60?,则直线
PC与平面APB所成角的余弦值是( )
A. B. C.
D.
9.正方体ABCD—A1B1C1D1中,E、F分别是AA1、AB的中点,则EF与对角面A1C1CA所成角的度数是( )
A.30? B.45? C.60? D.150?
10.设A、B、C、D是空间四个不同的点,在下列命题中,不正确的是
(A)若AC与BD共面,则AD与BC共面
(B)若AC与BD是异面直线,则AD与BC是异面直线
(C)若AB=AC,DB=DC,则AD=BC
(D)若AB=AC,DB=DC,则AD⊥BC
11.对于平面和共面的直线、下列命题中真命题是
(A)若则 (B)若则
(C)若
则 (D)若、与所成的角相等,则
12.给出以下四个命题:
①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,
②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面
③如果两条直线都平行于一个平面,那么这两条直线互相平行,
④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
其中真命题的个数是
A.4 B. 3 C. 2 D. 1
二、填空题(本大题共4小题,每小题4分,共16分)
13.设是直二面角,,,,,
则 。
14.、、是两两垂直且交于O点的三个平面,P到平面、、的距离
分别是2、3、
6,则 。
15. 如图,在正三棱柱
,则点
中,AB=1。若二面角的大小为
到直线AB的距离为 。
16.已知正四棱锥的体积为12,底面对角线的长为二面角等于_______________
,则侧面与底面所成的
三、解答题(本大题共6小题,共74分)
17.如图,ABCD-A1B1C1D1是正四棱柱。
(I)求证:BD⊥平面ACC1A;
(II)若二面角C1-BD-C的大小为60°,求异面直线BC1与AC所成角的大小。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库高中数学必修二新课程训练题(直线、平面、简单几何体1)在线全文阅读。
相关推荐: