另外,这一问题除了可以利用高斯定理进行解决以外,还可以利用场强的叠加计算法进行计算。首先,将带电球面分成不同半径的圆环。其次,根据相应的场强计算公式,计算出每个带电圆环中所对应的相应的场强。最后,将每个带电圆环的场强进行叠加计算,并通过计算叠加积分的方式进行确定场强的分布情况。这种计算方式的优点是计算思路较为清晰,缺点是计算过程较为复杂,容易在计算过程中出现计算误差,进而影响最终的计算结果。由此可以看出,要想得到较为准确的计算结果,将对称性原理与高斯定理相结合方法的计算流程比较简单,在计算过程中出现失误的概率也比较低。
2.3对称性原理在安培环路定理中的应用
将对称性原理与安培环路定理相互结合是物理电磁学中的重点内容,安培环路定理与电磁的对称性并不相关,但是在具体解题过程中,可以将安培环路定理与对称性原理相互结合,这种方式能够简化计算流程,提高计算效率。在利用该原理进行计算的过程中,主要将电场的分布情况、安培环路定理以及对称性原则相互结合,进而计算出电磁场的强度。例如,螺绕环如图2所示,在圆环上缠绕一圈线圈,其中的总匝数以及电流已知,求绕环内的磁场分布情况。在解决这类问题的过程中,传统的解题方法是将该螺绕环分为几部分,分别求出每部分螺绕环中的磁感应强度,再将每部分的场强这种方式虽然在解题思维中具有较强的逻辑性,但是在实际计算的过程中,由于涉及的计算量较大,所以很容易出现计算失误的情况。因此,要想在保证计算质量的同时简化计算步骤,则需要利用安培环路定理进行计算。在此过程中,可以在螺绕环中设置一定点P,帮助解题者进行问题分析。接着,利用安培环路定理就能够求出该导线电磁场的强度。这种方式能够简化计算流程,进而提高最终计算结果的准确性。针对此题,可以在螺绕环中取一定P,半径为r,通过安培环路定理能够求出环绕内的磁场分布情况。具体的解题流程如下,根据安培环路定理能够得出。
2.4对称性原理在电场分布中的应用
电场分布式物理电磁领域的重点研究内容,在对该类问题进行计算的过程中,可以利用场强叠加的方式进行计算,但是这种方式在计算过程中的计算量较大,容易出现计算失误的情况。但是对称性原理的应用有效解决了这一问题,应用对称性原理能够准确找到电场之间存在的内部联系,通过简单快捷的方式进行计算。目前,对称性原理在电场分布中的应用大致可以分为两种情况,第一种情况是金属板中电荷密度的分布,第二中情况是带电圆柱体中电场的分布。其中,在对金属板中电荷密度的分布情况进行研究的过程中,要抓住电荷密度对称性的原理进行计算。例如,一个带电的点电荷位于金属板的上方,二者之间的距离已知,求金属板与点电荷距离为二分之一时的电荷密度。在该问题中,由于已知条件较少,容易给解题者造成一定的误导。这时,可以通过对点电荷进对称性分析的方式进行问题分析。由于电荷分布具有一定的对称性,所以点电荷的分布情况无论发生怎样的改变都会呈对称性分布。得出这一结论的依据是对称性原理的第一条内容。也就是说,可以在该点电荷周围画出电荷密度的等值线,以带电点电荷为中心点,同一半径所对应的电荷密度相等,根据这一性质能够准确画出电荷密度的分布情况。当完成等值线后,能够根据相应的公式求出电荷的场强,因为场强的方向與金属板的方向相互垂直,所以通过矢量叠加的方式能够求出二分之一距离处电荷密度的分布情况[4]。
在对带电圆柱体电场分布情况进行研究的过程中,要对圆柱体中电场的分布情况进行正确认识。例如,有的圆柱体中放置一带电电荷,求该圆柱体中电场的分布情况。而有的圆柱体中放置另一个空芯的圆柱体,这时,在计算的过程中就应考虑到空心圆柱体的内部位置,并对其内部电厂的分布情况进行计算,该种情况也是较为常见的圆柱体电场分布问题。例如,一带电圆柱体中含有一个空心的圆柱体,该空心圆柱体的中心点与圆柱体中心点之间的距离为已知,求该带电圆柱体中除了空心圆柱体之外部分的电厂分布情况。在解决这一问题的过程中,由于圆柱体具有一定的对称性,所以可以通过对称性原理对圆柱体进行分析。并对圆柱体中存在的矢量进行计算。由于圆柱的特殊性,所以在计算过程中,可以在圆柱体中建立高斯面的方式进行计算,并将最终的计算结果进行叠加,进而得到最终的电场分布情况。
2.5对称性原理在麦克斯韦方程组中的应用
麦克斯韦方程组主要的研究对象是电磁学理论,该中计算方式最早出现在19世纪,为物理电磁学的研究做出了重大的研究贡献,最早的麦克斯韦方程组由十几个方程组组成,随着社会大环境的变换,最终简化为四个方程,分别为高斯定律、高斯磁定律、法拉第定律以及安培定律[5]。
3结语
随着人们对对称性原理的重视程度越来越高,如何将对称性原理与电磁学相互结合,成为有关人员关注的重点问题。本文通过对对称性原理在电磁学中的应用进行研究发现,对其进行研究,能够有效简化电磁学问题在计算过程中的计算流程,并进一步提高最终计算结果的准确性,同时还能够加深人们对电磁学的理解程度。由此可以看出,对对称性原理在电磁学中的应用进行研究,能够为今后对称性原理在物理电磁学领域的发展奠定基础,同时促进对称性原理以及电磁学领域的共同发展。
参考文献
[1]肖志俊.对称性原理在电磁学中的应用[J].软件,2016,(04):120-122.
[2]丁朝华,李永藤.浅析对称性分析法在电磁学中的应用[J].内蒙古民族大学学报:自然科学版,2015,(05):508-510.
[3]张彬.试论对称性原理在电磁学中的应用[J].电子制作,2015,(12):52-53.
[4]刘国钰.浅析对称性分析在电磁学中的应用[J].职业技术教育,2016,(02):48-50.
[5]王寒寒,刘莹.浅谈对称性在电磁学中的应用[J].科技展望,2017,(05):163.
作者:沈越
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育类关于对称性原理在电磁学中的应用分析(2)在线全文阅读。
相关推荐: