77范文网 - 专业文章范例文档资料分享平台

微纳米氧化锆制备方法的专利技术分析

来源:网络收集 时间:2021-05-12 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

微纳米氧化锆制备方法的专利技术分析

李召

(国家知识产权局专利局专利审查协作江苏中心,江苏 苏州 215163)

【摘要】主要以专利数据为分析样本,研究有关微纳米氧化锆的制备方法的国内外专利申请整体情况、主要技术分支的专利申请情况、主要申请人专利申请分析等问题。研究表明:微纳米氧化锆的制备起步于20世纪80年代,在1999-2006年经历了迅速发展的过程,技术已趋于成熟。中国在该方面的申请数量遥遥领先于其他国家,但是其在产品研发及新产品保护方面力度不足。

教育期刊网 http://www.jyqkw.com
关键词 氧化锆;ZrO2;水热法;溶胶凝胶法;沉淀法;溶液燃烧法;醇盐水解法;微乳液法

0引言

氧化锆有三种晶型,低温为单斜晶系,相对密度为5.65g/cm3;高温为四方晶系,相对密度为6.10g/cm3;更高温度下转变为立方晶系,相对密度为6.27g/cm3。单斜氧化锆加热到1170℃时转变为四方氧化锆,这个转变速度很快并伴随7%~9%的体积收缩。但在冷却过程中,四方氧化锆往往不在1170℃转变为单斜氧化锆,而在1000℃左右转变,是一种滞后的转变,同时伴随着体积膨胀。在固定组成陶瓷基体中,氧化锆的相变温度随粉体颗粒直径的减小而降低,在冷却过程中大颗粒先发生转变,小颗粒在较低温度下发生转变,当颗粒足够小时能够提高材料强度的四方氧化锆可以保存到室温,甚至室温以下。因此,减小氧化锆粉体粒度对于提高材料强度是非常有利的,这样新型的高科技材料微纳米氧化锆应运而生。

高纯超细氧化锆粉体的研制兴起于20世纪五、六十年代。随着制备工艺的不断发展和完善,先后出现了中和沉淀法、水解沉淀法、醇盐水解沉淀法、水热分解法及溶胶-凝胶法等各种制备方法。国内制粉的研究起步较晚,如醇盐水解法及溶胶-凝胶法的等先进的制粉方法的研究才刚刚开始。

目前制作氧化锆粉体的方法可分为三种:固相合成法、液相合成法和气相合成法。其中液相合成法效率高、粉末颗粒质量好,设备比较简单,因而得到广泛的应用。

本文主要以专利数据为分析样本,研究有关微纳米氧化锆的制备方法的国内外专利申请整体情况、主要技术分支的专利申请情况、主要申请人专利申请分析等问题。本文所依据的数据来自中国专利文摘数据库(CNABS),外文数据库(VEN),并对国际专利分类表下的“C01G25/02”分类号内的专利进行研究。

通过浏览上述分类号下的每篇专利的摘要和权利要求,必要时还查看了说明书,在阅读过程中筛去与本文的主题不相关的专利文献,如涉及氧化锆表面改性等。对这筛选出来的206篇专利文献从制备方法的技术手段进行标引。下表1给出了标引的分类形式。下文的所有统计、分析是以最终筛选出来涉及微纳米氧化锆在制备方法的专利文献为基准的。

1微纳米氧化锆专利申请总体分析

1.1国内外专利申请整体状况

从图1中可以看出,微纳米氧化锆的技术发展从1980年开始大致经历了三个阶段:1998年以前为第一阶段,1999-2006年为第二阶段,2006年以后为第三阶段。

第一阶段:国内外1980-1998年有关微纳米氧化锆的专利申请较少,年申请量都在10件以下(除了1990年)。究其原因,可能是因为当时纳米技术不够成熟,各年申请量呈波动状态,在微纳米氧化锆方面的发展缓慢。

第二阶段:1999年以后,纳米技术逐渐成为了各国研究的热点,关于微纳米氧化锆的制备方法的专利申请量获得突飞猛进的增长,在2006年达到67件,达到各年申请量的最高值。

第三阶段:2007之后的年份年申请量又逐渐下降,并呈逐年递减的趋势。其原因可能为:微纳米氧化锆的制备方法已经成熟,新的制备方法减少。

1.2主要技术分支的专利申请状况

从图2中可以看出,关于液相法制备微纳米氧化锆的申请量较多,远远超过了其他分支的申请量,占总申请量的84%左右,而其中的水热法分支的申请量占了总申请量的25%,其余分支的申请量差不多,占总申请量的6~23%。另外,图2表明微纳米氧化锆的制备方面的专利申请在气相沉积法、微波诱导法、超声波法的分布比较分散,研究重点并没有集中在这三个分支,如果对这三个分支进行改进的话,将有很大的专利布局空间。

1.2.1气相沉积

气相沉积法是利用气态或蒸气态的物质在气相或气固界面上反应生成固态沉积物的技术。化学气相沉积法制备粉体是在气相中利用锆的挥发性金属化合物的蒸气,在氮气保护环境下通过化学反应可快速冷凝制备出ZrO2(s)纳米粒子(参见CN103243300A)。

1.2.2液相法

1)醇盐水解法

醇盐水解法的原理是利用金属醇盐与水反应生成氧化物、氢氧化物、水合物的沉淀,然后沉淀过滤、洗涤、粉碎、煅烧即可得到所需粉体。金属醇盐由于表现出和羟基化合物相同的化学性质如强碱性、酸性等被用来水解制备纳米粒子,其实质是一种诱导体。用此法制备氧化锆纳米粉体是将含有锆的醇盐加水分解,然后依其工艺流程制得氧化锆粉体(参见EP88200481A)。

2)沉淀法

沉淀法是将沉淀剂和金属盐在水溶液中进行沉淀,然后再对沉淀物进行固液分离、洗涤、干燥以及加热分解等步骤处理后制得所需粉体(参见CN101830506A)。

3)水热法

水热法制备粉体材料的基本原理是在高温高压环境下,一些M(OH)x,在水中的溶解度大于其相应的MOx在水中的溶解度,因而M(OH)x可溶于水并同时析出MOx。实质是把前驱物置于高温高压的水热介质中进行化学反应,实现原子、分子级的微粒成核和晶体生长,最终形成具有一定粒度和结晶形态的晶粒的过程。它是制备结晶良好、无团聚的超细陶瓷粉体的优选方法之一,所需温度低,晶粒大小的可控制性好,且水热反应过程所选物及产生物无毒,是制备纳米粉体的优选方法(参见CN102442699A)。

4)微乳液法

微乳液法也称W/O反向胶团法,是一种制备纳米粉末的有效方法。微乳液通常由表面活性剂、助表面活性剂(通常是醇类)、油(通常为炭氢化合物)和水或电解质水溶液组成,是透明、各向异性的热力学稳定体系。在微乳液中,金属无机盐水溶液以纳米级的微水核稳定分散在有机相中。微水核被一层表面活性剂分子形成的膜所包围,当共沉淀反应发生在反胶团内部并形成颗粒时,颗粒的尺寸和形状将受到微水核的溶盐量和反胶团本身的尺寸和形状的控制,同时表面活性剂膜也将阻止颗粒之间形成团聚体(参见CN1334243A、CN1733611A)。

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说工学类微纳米氧化锆制备方法的专利技术分析在线全文阅读。

微纳米氧化锆制备方法的专利技术分析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/lunwen/gongxue/1224499.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: