课后作业概率统计考卷(06.6)
一.选择题:
1. B 2. A 3. D 4. D 5. A 二. 填空题:
111. 2. 3. 1 4. ???1 5. 10.1 166三. 计算题
1. 解: 设A表示”甲击中靶”, B表示”乙击中靶”,由此可知A,B相互独立. (1): P(AB?AB)?P(AB)?P(AB)?P(A)P(B)?P(A)P(B) ?0.6?0.2?0.4?0.8?0.44 (2) P(A?B)?P(A)?P(B)?P(AB)?P(A)?P(B)?P(A)P(B) ?0.6?0.8?0.6?0.8?0.92 (3) P(AB)?P(A)P(B)?0.6?0.8?0.48
2. (书上原题P59页,例2.3.10)
解: 男子身高X~N(?,?2), 设车门高度为h cm时,
h?170)?0.01 P(X?h)?1?P(X?h)?1??(6h?170h?170?()?0.99, ??2.33, ?h?170?2.33?6?183.98?184
66 车门高度至少为184cm.
四. 计算题 1. (作业例题)
(1) 1???????????f(x,y)dy????0???0Ke?(x?2y)dxdy?K?edx?e?2ydy
00???x?? ?K(?e?x??1?2y??K)(?e)? ?K?2 0022(2) 边缘概率密度 fX(x)??????f(x,y)dy,
当x?0时, f(x,y)?0当x?0时, fX(x)???e?x,fX(x)???0x?0x?0???fX(x)?0
f(x,y)dy??2e?(x?2y)dy?e?x
0????
同理 边缘概率密度
fY(y)?????????(x?2y)?dx,??02ef(x,y)dx???0?y?0?2e?2y??y?0?0y?0 y?0(3) ?f(x,y)?fX(x)fY(y) X, Y是相互独立的. (4) P(X?1,Y?1)??
2. 解: E(X)??2??????1?102e?(x?2y)dxdy?2?e?xdx?e?2ydy?e?1?e?3
101??1xf(x)dx??2x?1?1?x1?12dx?0
E(X)?? ?????xf(x)dx???20x2?1?x2dx??12x20?1?x2dx
1 ??212 D(X)?E(X2)??E(X)??
2五.计算题:
??X?74.001 1. 解: E(X)??, ?1n2 S?(Xi?X)2?0.000016 ?n?1i?1cos2?d??2(n?1)S2???0.000014 D(X)?? ?n22
2. (06.12)同题1. 极大似然估计:
(a)似然函数 L(?)??f(xi,?)???xii?1i?1nn??1??(?xi) 0?xi?1
ni?1n??1 (b)取对数: lnL(?)?nln??(??1)ln?xi
i?1ndln L( ?)nn (c)求导: ???lnxi?0
d??i?1???n ?? n?lnxii?1??? ??n?lnXi?1n (估计量)
i
3. 解:?总体X~N(?,0.0052) 这是?未知下,关于?2的假设检验问题.(?2检验)
2设原假设H0: ?2??0?0.0052 备择假设H1:?2?0.0052
认定原假设成立,则?2?0.0052 检验统计量??2(n?1)S22?08S22?~?(n?1) 20.00521?2 拒绝域: ?2??222?2(n?1)或?2???2(n?1) (??0.05) (n?1)s22?0将 S?0.004 代入检验统计量?? ?20.9(8)75??21?8?0.0042??5.12 20.00520.025?2(n?1)??2??222?2(n?1)??(8)
故接受原假设H0: ??0.005, 认为导线电阻的标准差乃为0.005
期末考试试卷(200806理)
一.选择题(每小题2分,共20分)
.1.B 2.C 3.A 4.C 5.D 6.C 7.B 8.A 9.D 10.A
二、填空题(每小题2分,共20分)
1. 1/8 2. 3/4 3. 1/5 4. 1 5. 27/32 6. 3 7. 6 8. 1.8 9. 2三、计算题(每小题7分,共14分)
1. A=(甲中),B=(乙中)
(1)P(AB)?P(A)P(B)?0.6×0.8=0.48
(2)P(A?B)?P(A)?P(B)?P(AB)?0.6+0.8-0.48=0.92
(3)P(AB?AB)?P(AB)?P(AB)?P(A)P(B)?P(A)P(B)=0.4×0.8+0.6×0.2=0.44 2. f(x)???nu0.05 10. T?X??0S/n
?1/32?x?5
其它?0??5P(X?3)??f(x)dx??1/3dx?2/3
33假设Y为三次独立观测忠观测值大于3的次数,Y~B(3,2/3)
1202232P(Y?2)?C3()2?C3()3?
33327四.计算题(每小题8分,共16分).
1. .解:设A={合格品},B={出厂品},则:P(B)?P(A)P(B|A)?P(A)P(B|A)
获得出厂的合格品的概率P(A|B)为:
P(A|B)?P(AB)P(A)P(B|A)0.96?0.95???0.9978 P(B)P(B)0.96?0.95?0.04?0.05未获得出厂的废品的概率P(A|B)为:
P(A|B)?2
P(AB)P(A)P(B|A)0.04?0.95???0.4421?P(B)1?(0.96?0.95?0.04?0.05)P(B)
(1)1??????f(x)dx?c?,c???1x??(2)x??1时,F(x)?0;?1?x<1,F(x)??1f(t)dt?arcsinx?,x?1时,F(x)=1?21
五、计算题(第一小题10分,第二小题8分,共18分)
1??1.(1)f(x,y)??(b?a)(d?c)?0????f(x,y)dy??(2)fX?x???????0??1,???b?a??0,a?x?b其它(x,y)?D其它1dy,(b?a)(d?c)
?dca?x?b其它
?1,?同理可得:fY?y???d?c??0,c?y?d其它(3)f(x,y)?fX(x)fY(y),故X,Y相互独立。
2.. (1)L(?)??f(x;?)???eii?1i?1nnn1?xi?=
1??n?exi??i?11n(2)lnL(?)??nln??x??i?11ni
dlnL(?)n1(3)???2d???六、计算题(8分)
1nxi?0解得,???xi?x ?ni?1i?1(1)提出原假设H0:??310, (2)选样本统计量U?X??0?n~N?0,1?
(3)故拒绝域为U?1.96 (4) ??0.05,U?/2?U0.025?1.96,X?320,n?10,??12,
??U?320?310?2.64?1.96,
1210 故拒绝原假设.
期末考试试卷(200905理)
一、 选择题(每小题3分,共24分)
1.A 2.D 3.B 4.C 5.A 6.D 7.B 8.C 9.D 10.C
二、填空题(每小题2分,共16分)
?2e?2y1.1/7 2.1/2 3.1/4 4.2 5fY(y)???0y?0y?0
X1n?6.0.8 7.3 8.F?1,n? 9. ?4.412,5.588? 10. p??2?Xi nni?1三、计算题(每小题7分,共14分)
1.设A?{ 机器发生故障},B?{第一件产品是合格品}
P?A??0.25,PA?0.75,P?BA??0.3,PBA?0.9.由贝叶斯公式可得: P?AB???P?A?P?BA?P?A?P?BA??PAPBA????????
0.25?0.3?0.10.25?0.3?0.75?0.91x?1?1000e,x?0?2.由题意:X?f(x)??1000,
?0,x?0?P(X?1000)??100001?e10001x10001dx?1?e?1,P?C3(1?e?1)e?1?3(1?e?1)e?1
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率期末试卷答案(缺07年6月一份)在线全文阅读。
相关推荐: