似,其他形式的变换,如沃尔什变换、数论变换等也可有其快速算法。
3.3 谱分析
在频域中描述信号特性的一种分析方法,不仅可用于确定性信号,也可用于随机性信号。所谓确定性信号可用既定的时间函数来表示,它在任何时刻的值是确定的;随机信号则不具有这样的特性,它在某一时刻的值是随机的。因此,随机信号处理只能根据随机过程理论,利用统计方法来进行分析和处理,如经常利用均值、均方值、方差、相关函数、功率谱密度函数等统计量来描述随机过程的特征或随机信号的特性。
数字信号处理的应用领域十分广泛。就所获取信号的来源而言,有通信信号的处理,雷达信号的处理,遥感信号的处理,控制信号的处理,生物医学信号的处理,地球物理信号的处理,振动信号的处理等。若以所处理信号的特点来讲,又可分为语音信号处理,图像信号处理,一维信号处理和多维信号处理等。
3.4 处理系统
无论哪方面的应用,首先须经过信息的获取或数据的采集过程得到所需的原始信号,如
果原始信号是连续信号,还须经过抽样过程使之成为离散信号,再经过模数转换得到能为数字计算机或处理器所接受的二进制数字信号。如果所收集到的数据已是离散数据,则只须经过模数转换即可得到二进制数码。数字信号处理器的功能是将从原始信号抽样转换得来的数字信号按照一定的要求,例如滤波的要求,加以适当的处理,即得到所需的数字输出信号。经过数模转换先将数字输出信号转换为离散信号,再经过保持电路将离散信号连接起来成为模拟输出信号,这样的处理系统适用于各种数字信号处理的应用,只不过专用处理器或所用软件有所不同而已。
3.5 语音信号处理
语音信号处理是信号处理中的重要分支之一。它包括的主要方面有:语音的识别,语言的理解,语音的合成,语音的增强,语音的数据压缩等。各种应用均有其特殊问题。语音识别是将待识别的语音信号的特征参数即时地提取出来,与已知的语音样本进行匹配,从而判定出待识别语音信号的音素属性。关于语音识别方法,有统计模式语音识别,结构和语句模式语音识别,利用这些方法可以得到共振峰频率、音调、嗓音、噪声等重要参数,语音理解是人
和计算机用自然语言对话的理论和技术基础。语音合成的主要目的是使计算机能够讲话。为此,首先需要研究清楚在发音时语音特征参数随时间的变化规律,然后利用适当的方法模拟发音的过程,合成为语言。其他有关语言处理问题也各有其特点。语音信号处理是发展智能计算机和智能机器人的基础,是制造声码器的依据。语音信号处理是迅速发展中的一项信号处理技术。
3.6 图像信号处理
图像信号处理的应用已渗透到各个科学技术领域。譬如,图像处理技术可用于研究粒子的运动轨迹、生物细胞的结构、地貌的状态、气象云图的分析、宇宙星体的构成等。在图像处理的实际应用中,获得较大成果的有遥感图像处理技术、断层成像技术、计算机视觉技术和景物分析技术等。根据图像信号处理的应用特点,处理技术大体可分为图像增强、恢复、分割、识别、编码和重建等几个方面。这些处理技术各具特点,且正在迅速发展中。
3.7 振动信号处理
机械振动信号的分析与处理技术已应用于汽车、飞机、船只、机械设备、房屋建筑、水坝设计等方面的研究和生产中。振动信号处理的基本原理是在测试体上加一激振力,做为输入信号。在测量点上监测输出信号。输出信号与输入信号之比称为由测试体所构成的系统的传递函数(或称转移函数)。根据得到的传递函数进行所谓模态参数识别,从而计算出系统的模态刚度、模态阻尼等主要参数。这样就建立起系统的数学模型。进而可以做出结构的动态优化设计。这些工作均可利用数字处理器来进行。这种分析和处理方法一般称为模态分析。实质上它就是信号处理在振动工程中所采用的一种特殊方法。
3.8 地球物理信号处理
为了勘探地下深处所储藏的石油和天然气以及其他矿藏,通常采用地震勘探方法来探
测地层结构和岩性。这种方法的基本原理是在一选定的地点施加人为的激震,如用爆炸方法产生一振动波向地下传播,遇到地层分界面即产生反射波,在距离振源一定远的地方放置一列感受器,接收到达地面的反射波的延迟时间和强度来判断地层的深度和结构。感受器所接收到的地震记录是比较复杂的,需要处理才能进行地质解释。处理的方法很多,有反褶积法,同态滤波法等,这是一个尚在努力研究的问题。
3.9 生物医学信号处理
信号处理在生物医学方面主要是用来辅助生物医学基础理论的研究和用于诊断检查和监
护。例如,用于细胞学、脑神经学、心血管学、遗传学等方面的基础理论研究。人的脑神经系统由约 100亿个神经细胞所组成,是一个十分复杂而庞大的信息处理系统。在这个处理系统中,信息的传输与处理是并列进行的,并具有特殊的功能,即使系统的某一部分发生障碍,其他部分仍能工作,这是计算机所做不到的。因此,关于人脑的信息处理模型的研究就成为基础理论研究的重要课题。此外,神经细胞模型的研究,染色体功能的研究等等,都可借助于信号处理的原理和技术来进行。
数字信号处理在其他方面还有多种用途,如雷达信号处理、地学信号处理等,它们虽各有其特殊要求,但所利用的基本技术大致相同。在这些方面,数字信号处理技术起着主要的作用。
3.10 DSP在车用燃料电池发动机控制器中的应用
系统结构及组成
该控制器的研制使用全新的设计思路,对外部输入及输出信号采用电隔离技术,摒弃外购工控模块的思想,利用D S P 技术,根据实际测控要求,自主开发核, OMCU模板。使原来的5 ~ 6个测控模板,减至为2 个。发动机控制器主要由信号调理板、D S P 主板构成。系统组成参见图4.1.1 。
信号调理板将9 1、电路传来的各种信号进行汇总、隔离、转换成为统一的标准信号, 传送给D S P 主板;再将D S P 主板发出的信号隔离、转换、调制成的各种控制信号, 传送给发动机所需被控的各执行部件。
D S P 主板则将被调制好的各种信号直接进行收集、分析、判断、处理, 再通过各种电路模块形成相应的控制信号, 然后发送给信号调理板。经过信号调理输出, 控制发动机上的各个执行部件, 从而达到调整发动机工作状态的目的。
系统工作原理
车用电系统测控是将由压力传感器、温度传感器、氢气传感器、转速变送单元所传来
的相关组部件的工作状态以相对统一的电信号输入至发动机核心控制器, 由控制器进行信号调理、A /D 转换、判断、处理, 再输出不同形式的信号, 控制继电器、调节阀、电磁阀, 从而达到控制发动机系统工作状态的目的。
D S P 主板
核心D S P 主板主要由C P U 电路、C A N 接口电路、数字输入/输出、继电器控制电路、模拟D /A 输出、模拟A /D 输入、R S 4 8 5 通信接口电路、J T A G 仿真器接口电路、调节阀电机隔离控制输出电路、电平转换电路、复位电路、电源供电电路1 2 部分组成。其原理框图参见图4.1.2
4、 结束语
随着科学技术的发展,DSP的应用必将越来越广泛,对社会的进步将起到尤为重要的作用。短短一个学期的课程,并不能让我们完全掌握所有知识,但它激发了我们学习DSP的兴趣。只有我们在课后主动的花更多的时间去学习,才能更好的学好它,并将所学到的知识与实际结合起来,才能发挥DSP的强大功能。
参考文献 [1] 百度文库
[2] DSP入门教程//网络资源
[3] DSP原理及应用报告//网络资源
[4] 韦哲, 程自峰.DSP技术在医学仪器中的应用. 医疗装备2005第7期. 2005 - 05 – 30 [5] 黄晓勤,严松. DSP在车用燃料电池发动机控制器中的应用. 电气时代. 2008年第10期 [6] 潘言全. DSP 在异步电动机控制中的应用. 中国水运. 第08卷 第6期. 2008 年6月
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库现代DSP技术及应用课程总结报告(3)在线全文阅读。
相关推荐: