第5课时 万有引力定律与天体运动
导学目标 1.掌握万有引力定律的内容、公式及适用条件.2.学会用万有引力定律解决天体运动问题.
一、开普勒三定律 [知识梳理]
1.开普勒第一定律:所有行星绕太阳运动的轨道都是________,太阳处在椭圆的一个________上.
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相同的时间内扫过相等的________.
3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的________________的比值都
a3
相等,即2=k.
T
思考:开普勒第三定律中的k值有什么特点? 二、万有引力定律 [基础导引]
根据万有引力定律和牛顿第二定律说明:为什么不同物体在
地球表面的重力加速度都是相等的?为什么高山上的重力加速度比地面的小? [知识梳理] 1.内容
自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与________________________________成正比,与它们之间____________________成反比. 2.公式
____________,通常取G=____________ N·m2/kg2,G是比例系数,叫引力常量. 3.适用条件
公式适用于________间的相互作用.当两物体间的距离远大于物体本身的大小时,物体可视为质点;均匀的球体可视为质点,r是__________间的距离;对一个均匀球体与球外一个质点的万有引力的求解也适用,其中r为球心到________间的距离.
考点一 天体产生的重力加速度问题 考点解读
星体表面及其某一高度处的重力加速度的求法:
MmGM
设天体表面的重力加速度为g,天体半径为R,则mg=G2,即g=2(或GM=gR2)
RR
MmGMR2
若物体距星体表面高度为h,则重力mg′=G,即g′==g.
(R+h)2(R+h)2(R+h)2
1
典例剖析
例1 某星球可视为球体,其自转周期为T,在它的两极处,用弹簧秤测得某物体重为P,在它的赤道上,用弹簧秤测得同一物体重为0.9P,则星球的平均密度是多少?
跟踪训练1 1990年5月,紫金山天文台将他们发现的第2 752号小行星命名为吴健雄星,该小行星的半径为16 km.若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同.已知地球半径R=6 400 km,地球表面重力加速度为g.这个小行星表面的重力加速度为 ( )
11
A.400g B.g C.20g D.g
40020考点二 天体质量和密度的计算 考点解读
1.利用天体表面的重力加速度g和天体半径R.
MmgR2MM3g由于G2=mg,故天体质量M=,天体密度ρ===.
RGV434πGR
πR32.通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r.
Mm4π24π2r3
(1)由万有引力等于向心力,即G2=m2r,得出中心天体质量M=2;
rTGT
3
MM3πr
(2)若已知天体的半径R,则天体的密度ρ===23;
V43GTR
πR3
(3)若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,
3π
则天体密度ρ=2.可见,只要测出卫星环绕天体表面运动的周期T,就可估测出中心天
GT体的密度.
Mm
特别提醒 不考虑天体自转,对任何天体表面都可以认为mg=G2.从而得出GM=gR2(通
R常称为黄金代换),其中M为该天体的质量,R为该天体的半径,g为相应天体表面的重力加速度. 典例剖析
例2 天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10
11
-
N·m2/kg2,由此估算该行星的平均密度约为 ( )
A.1.8×103 kg/m3 B.5.6×103 kg/m3 C.1.1×104 kg/m3 D.2.9×104 kg/m3
跟踪训练2 为了对火星及其周围的空间环境进行探测,我国于2011年10月发射了第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出 ( ) A.火星的密度和火星表面的重力加速度 B.火星的质量和火星对“萤火一号”的引力 C.火星的半径和“萤火一号”的质量
2
D.火星表面的重力加速度和火星对“萤火一号”的引力
3.双星模型
例3 宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不至因万有引力的作用吸引到一起.
(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比.
(2)设两者的质量分别为m1和m2,两者相距L,试写出它们角速度的表达式. 建模感悟
1.要明确双星中两颗子星做匀速圆周运动的向心力来源
双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供.由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小.
2.要明确双星中两颗子星做匀速圆周运动的运动参量的关系
两子星绕着连线上的一点做匀速圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比. 3.要明确两子星做匀速圆周运动的动力学关系
设两子星的质量分别为M1和M2,相距L,M1和M2的线速度分别为v1和v2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:
2v1M1M2M1:G2=M1=M1r1ω21 Lr1
2v2M1M2M2:G2=M2=M2r2ω22 Lr2
在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径.
跟踪训练3 宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设每个星体的质量均为m.
(1)试求第一种形式下,星体运动的线速度和周期.
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
A组 开普勒定律的应用
1.(2010·新课标全国·20)太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图象.图中坐标系的横轴是lg(T/T0),纵轴是lg(R/R0);这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,T0和R0分别
3
是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是 ( )
2.(2011·安徽·22)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a
a3
的三次方与它的公转周期T的二次方成正比,即2=k,k是一个对所有行星都相同的常
T量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月地距离为3.84×108 m,月球绕地球运动的周期为2.36×106 s,试计算地球的质量M地.(G=6.67×10
B组 万有引力定律在天体运动中的应用
3.一物体静置在平均密度为ρ的球形天体表面的赤道上,已知万有引力常量为G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为 ( )
4π3A. B. 3Gρ4πGρ3ππC. D. GρGρ4.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍.一个在地球表面重量为600 N的人在这个行星表面的重量将变为960 N,由此可推知,该行星的半径与地球半径之比约为 ( ) A.0.5 B.2 C.3.2 D.4
5.宇航员在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L.若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L.已知两落地点在同一水平面上,该星球的半径为R,万有引力常量为G.求该星球的质量M.
-11
N·m2/kg2,结果保留一位有效数字)
4
课时规范训练
(限时:30分钟) m1m21.对万有引力定律的表达式F=G2,下列说法正确的是 ( )
rA.公式中G为常量,没有单位,是人为规定的 B.r趋向于零时,万有引力趋近于无穷大
C.两物体之间的万有引力总是大小相等,与m1、m2是否相等无关 D.两个物体间的万有引力总是大小相等,方向相反的,是一对平衡力
2.最近,科学家通过望远镜看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1 200年,它与该恒星的距离为地球到太阳距离的100倍.假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 ( ) A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比
D.行星运行速度与地球公转速度之比
3.两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F.若两个半径为实心小铁球半径2倍的实心大铁球紧靠在一起,则它们之间的万有引力为 ( ) A.2F B.4F C.8F D.16F 4.如图1所示,A和B两行星绕同一恒星C做圆周运动,旋转方向相 同,A行星的周期为T1,B行星的周期为T2,某一时刻两行星相距最 近,则 ( ) A.经过T1+T2两行星再次相距最近
T1T2B.经过两行星再次相距最近
T2-T1T1+T2
C.经过两行星相距最远
2T1T2D.经过两行星相距最远
T2-T1
图1
5.原香港中文大学校长、被誉为“光纤之父”的华裔科学家高锟和另外两名美国科学家共同分享了2009年度的诺贝尔物理学奖.早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”.假设“高
11
锟星”为均匀的球体,其质量为地球质量的,半径为地球半径的,则“高锟星”表面
kq的重力加速度是地球表面的重力加速度的 ( )
qkq2k2A. B. C. D. kqkq
11
6.火星的质量和半径分别约为地球的和,地球表面的重力加速度为g,则火星表面的重
102
力加速度约为 ( ) A.0.2g B.0.4g C.2.5g D.5g
5
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库天体运动在线全文阅读。
相关推荐: