计数脉冲进入,60秒后,555的输出又变为低电平,使计数器停止计数,此时,数码管显示的计数结果即为一分钟内脉搏跳动的次数。C10、R10组成清零电路,用来保证
在电源接通瞬间,R12、R15自动复位清零。七段数码管与CD40110的连接方式如下:
6、电源电路
电源退耦电路,采用了大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。在这些电路中的这一大一小的电容均称之为退耦电容。所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。
6
四、总原理及元器件清单电路工作
1、总电路图:
2、工作原理:
打上电源开关,电路各部分开始工作。首先是压电陶瓷片采集人体的的脉搏信号,经放大和整形后,脉冲数进入计数器,经译码后显示,计数开始。来一个脉冲计数器就加一。按键按下,定时开始,60s后,定时器输出端电平翻转,计数器停止工作。数码管显示出脉搏跳动的次数。 3、元器件清单 元件名称 集成块 集成块 集成块 电阻 电容 集成块 传感器 开关 电源 类型及参数 CD40110 CD4069 IN555 1M/200/1K/10k/20K/100k/滑动100K/200K 47uf/104/104/104/203/10uf 七段共阴数码管 压电陶瓷片 J1 VCC 说明 2块 非门1块 555定时器1块 各4、1、1、1、1、1、1、1个 各1个 2块 1 1个 直流5V 五、调试与分析
7
第一次调试:接通电源,数码管亮的段码有错。原因:原理图中数码管管脚与CD40110管教连接不匹配。解决办法:重新画了一小块数码管段码转换电路。电路图如
下
:
再将模拟脉搏信号从函数发生器发出,Vpp设置为5mv,计数器不工作,依次上调,直到Vpp=5v,计数器开始工作。原因:放大电路没有工作。解决办法:不接信号源,测试CD4069各管脚工作电压均为2.5,正常。接通信号源,CD4069的1脚输入信号,2脚无信号输出。在实验板上连接放大电路,改变非门的直流反馈电阻大小,3M、7M、10M均无反应。上网查找相关资料,解释说非门的放大作用效果不容易出现,对信号、电阻要求的条件也较高。最后,重新搭建运放放大电路。电路图如下:
第二次调试:接通电源,加上信号,Vpp设置为5mv,电路工作,开始计时。调节滑动变阻器,以使电路精确定时。最后发现,滑动变阻器调节为零,定时时间仍然超过60s。原因:可能由于电路结构的影响,定时电阻并不符合公式t=1.1RC,稍显过大。解决办法:将用做定时电阻的100K短接。重新调节滑动变阻器,可达到60s精确定时。
通过上述调试,电路能正常工作,但是接上压电陶瓷片采集人体的脉搏信号,结果仍不理想。
六、实验结果
左图为方案一整体电路PCB(包括电源退耦电路),右上图为数码管转换PCB,右下图为放大部分的PCB(包括电源退耦电路)。
8
七、结论与心得:
本次实验由我和队员共同完成,在这个过程中使我受益匪浅。在确定各模块电路的过程中,不但训练了我们查找资料的能力,更是一次很好考验我们用所学的模拟电子技术基础和数字电子技术基础等相关知识来判断电路正确与否的机会。通过此次课程设计的锻炼,自己的动手能力有了很大的提高,查找问题、解决问题的能力也有了相应的进步。
当然,这次试验也让我看到了我们的很多缺陷。首先就是在画原理图的时候没有看清数码管的管脚,以致出现乱码的情况。还有就是在确定方案之前,没有在实验板上认真搭建电路,事前摸清放大模块的工作情况。由于这两次较大的失误使整个设计与制作过程耗时耗力耗材超过预算。
总的来说,本次设计有苦也有甜。 设计思路是最重要的,只要你的设计思路是成功的,那你的设计已经成功了一半,因此我们应该在设计前做好充分的准备。同时熟练地掌握课本上的知识,这对试验中出现的问题进行分析解决也是相当重要的。 这次设计留给我们印象最深的是要设计一个成功的电路,必须要有耐心,更要有坚持的毅力。
参考文献:
[1] 华成英编著.《数字电子技术基础(第四版)》.高等教育出版社 2006 [2] 崔瑞雪、张增良编著.《电子技术动手实践》.北京航空航天大学出版社 2007 [3] 康华光编著《.电子技术基础模拟部分(第四版)》.北京:高等教育出版社 1998 [4]《实用医疗保健电子装置制作》
9
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库理解 电子脉搏计(2)在线全文阅读。
相关推荐: