77范文网 - 专业文章范例文档资料分享平台

非线性动力学与混沌理论(2)

来源:网络收集 时间:2019-03-16 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

实际上,有规则滴水的水龙头与“无规则”滴水的水龙头都是同一数学处方的略微不同的变体。但随着水流经过水龙头的速率的增加,动力学特性的类型发生变化。代表动力学特性的相空间中的吸引子在不断地变化---它以一种可预言的、但极复杂的方式在发生变化。

有规则滴水的水龙头有一个反复滴一滴一滴一滴的节律,每一滴都与前一滴相同。然后略微旋开水龙头,水滴略快。现在节律变成滴一滴一滴一滴,每2滴就重复一次。不仅水滴的大小它决定水滴听上去有多响,而且从这一滴到下一滴的滴落时刻,都略有变化。

假如你让水流得再快一些,得到4滴节律,水滴再快一点,产生8滴节律。水滴重复序列的长度不断加倍。在数学模型里,这一过程无限继续下去,具有16,32,64等水滴的节律群。但产生每次相继周期倍化的流速变得愈来愈细微;并存在一个节律群大小在此无限频繁加倍的流速。此时此刻,没有任何水滴序列完全重复同一模式。这就是混沌。

我们可以用庞加莱的几何语言来表达所发生的情形。对于水龙头,吸引子起初是闭环,表示周期循环。设想这环是围绕你手指的一根橡皮筋。当流速增大时,这环分裂成2个相邻的环,就像橡皮筋在手指上绕了2圈。于是橡皮筋2倍于原长度,所以周期加倍。然后这已经加倍的环又沿其长度完全以同样方式加倍,产生周期4循环,以此类推。在无穷多次加倍之后,你的手指被细面条似的橡皮筋缠绕,即混沌吸引子。这种混沌创生方案叫周期倍化级联。

1975年,物理学家米切尔·费根鲍姆Mitchell Feigenbaum发现,一个可用实验加以测量的特殊数与每个周期倍化级联相联系。这个数大约是4.669,它与π并列成为似乎在数学及其与自然界的关系中都有非同寻常意义的离奇数之一。费根鲍姆数也有一个符号:希腊宇母δ。数π告诉我们圆周长如何与圆的直径相关。类似地,费根鲍姆数δ告诉我们水滴周期如何与水的流速相关。准确地说,你必须通过这 个额外量旋开水龙头,在每次周期倍化时减小 1/4.669。 π是与圆有关的任何东西的一个定量特征。同理,费根鲍姆数δ是任何周期倍化级联的定量特征,不管级联是如何产生的或如何用实验

得出的。这同一个数在关于液氨、水、电路、摆、磁体以及振动车轮的实验中都会出现。它是自然界中一个新的普适模式,是我们仅仅透过混沌之眼就可看到的模式,一个从定性现象产生的定量模式,一个数。这数确实是自然之数中的一个。

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库非线性动力学与混沌理论(2)在线全文阅读。

非线性动力学与混沌理论(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/528347.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: