江西理工大学应用科学学院2014届本科生毕业设计(论文)
通过采样,如设横向的像素数为M,纵向的像素数为N,则画面的大小可以表示为“M*N”个像素。 2.2.3 量化
经过采样,图像被分解成在时间上和空间上离散分布的像素,但是像素的值(灰度值)还是连续值。像素的值,是指白色-灰色-黑色的浓淡值,有时候也指光的强度(亮度)值或灰度值。把这些连续的浓淡值或灰度值变为离散的值(整数值)的操作就是量化。
如果把这些连续变化的值(灰度值)量化为8bit,则灰度值被分成0-255的256个级别,分别对应于各个灰度值的浓淡程度,叫做灰度等级或灰度标度。
在0-255的值对应于白-黑的时候,有以0为白,255为黑的方法,也有以0为黑,255为白的方法,这取决于图像的输入方法以及用什么样的观点对图像进行处理等,这是在编程时应特别注意的问题。但在只有黑白二值的二值图像的情形,一般设0为白,1为黑。
对连续的灰度值赋予量化级的,即灰度值方法有:均匀量化(uniform quantization),线性量化(liner quantization),对数量化,MAX量化,锥形量化(tapered quantization)等。
2.2.4 采样、量化和图像细节的关系
上面的数字化过程,需要确定数值N和灰度级的级数K。在数字图像处理中,一般都取成2的整数幂,即:
N?2n (2-1) K?2m (2-2)
一幅数字图像在计算机中所占的二进制存储位数b为
b?log(2m)N*N?N*N*m(bit) (2-3)
例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。随着N和m的增加,计算机所需要的存储量也随之迅速增加。
由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N值)以及量化的级数K(或m值)。N和K的值越大,图像越清晰。
7
江西理工大学应用科学学院2014届本科生毕业设计(论文)
2.3 几种典型的形状特征描述方法
对形状分析和分类的方法技术有许多。通常来说,形状特征表示方法可以分为两类:基于边界的和基于区域的。前者使用形状的外部边界,而后者使用整个区域。这两类形状特征的最典型的方法分别是傅立叶描述符、变形模板匹配和形状不变矩。此外轮廓匹配方法还有几何参数法、边界方向直方图法、小波重要系数法和小波轮廓表示法等。
几种典型的形状特征描述方法: (1)边界特征法
该方法通过对边界特征的描述来获取图像的形状参数。其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法
傅里叶形状描述符(Fourier shape descriptors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法
形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。在 QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。
(4)形状不变矩法
利用目标所占区域的矩作为形状描述参数来进行分类。 (5)其它方法
近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或 FEM)、旋转函数(Turning Function)和小波描述符(Wavelet Descriptor)等方法。
8
江西理工大学应用科学学院2014届本科生毕业设计(论文)
3 形状特征及提取分类
本文主要采用的是几何参数法来判断给出的的图像是什么形状。
对于图像分类问题,特征提取的好坏是决定分类性能的关键因素。提取物体的形状特征前,首先要对图像进行边缘提取,以获得物体的轮廓边界,然后需要把轮廓边界区域的特征抽取出来。在这些特征里面,有一部分可以用数字量值来描述,但更多的特征是一些没有明显特征的几何图形。为了便于图像的匹配,需要对这些几何图形进行进一步的描述。图像中物体的性质不能因为图像的平移、旋转、比例尺度的改变而发生变化。所以,在进行形状描述时,选择的描述符应具有平移不变性、旋转不变性、尺度不变性等特点。不但如此,选择的描述符还应该能够刻画形状的本质特点,使得该描述符具有良好的可分辨能力。
图像特征选择的原则特征提取是对模式所包含的输入信息进行处理和分析,将不易受随机因素干扰的信息作为该模式的特征提取出来。特征提取过程是去除冗余信息的过程,具有提高识别精度,减少运算量和提高运算速度的作用。良好的特征应具有四个特点:
(1)区别性
在理想情况下,分属于不同类别的对象的特征值应有明显差异。不同类别的某一特征值相差越大,则以这个特征区分不同类别的能力越强,特征的可区别性可以用类间距离来度量。
如三角形和圆这两类,有面积计算得到的类间距比较小,而形状指数的类间距离非常大,由于两类样本各自内部的形状指数基本相同,特征方差接近为0,因此类间距离表现为比较大。如果选择特征“形状指数”作为分类的依据,其可区别性较高;如果选择特征“面积”作为分类依据,其可区别性就较低。
(2)可靠性
在同一类别内的所有对象的某一特征值应尽可能地接近。类内特征值越接近,表明用这个特征值来识别这类对象的可靠性越高。
如一组不同大小的圆,若选择特征“面积”作为将其和其他类别相区分的依据,其可靠性较低,同一圆类内的不同样本的面积相差较大,而选择特征“形状指数”作为分类的依据,其可靠性就很高,同一圆类内各个个样本的形状指数基本相同。特征的可靠性是类别内样本属性趋同性的直接表现。
(3)独立性
9
江西理工大学应用科学学院2014届本科生毕业设计(论文)
如果必须采用多个特征进行分类时,这些特征之间应当尽可能是互不相关的。如两个高度相关的特征基本上反映了对象的同一属性,则可将其组合,而不宜单独采用。
如在几何形状分类时,形状面积和周长这两个特征之间高度相关,而形状面积和形状指数之间也有一定的相关性,但相关程度比较低。在一个识别系统中,特征的可区别性、可靠性和独立性都是针对整个系统的组成而言。对于单个对象,特征的可区别性、可靠性没有参照和对比意义。
3.1 矩形度
用目标图像的面积和包围该图像的最小的矩形面积之比作为目标矩形度的一种度量参数,记为
(3-1)
其中A0表示目标图像的面积,AR表示包围该图像的最小矩形的面积。R的大小能反映目标物体和矩形的接近程度。矩形度的值限定在0到1之间。
3.2 圆形度
对于面积一定的图形,一般周长越小,圆形表面越光滑,越接近圆;反之,周长越大,则圆形表面褶皱越多,形状也就越复杂。基于这个原因,一般采用圆形度来衡量图形偏向圆形状的程度。形状的圆形度是指目标物体的周长平方和其面积之比,记为
P2c? (3-2)
4?A
其中:P表示图形的周长,A表示周长所围的面积。理论上讲,圆的圆形度为1.0,正方形的圆形度为? 4 =0.79,正三角形的圆形度为(?3)9=0.60.
另外,圆形度还有两个计算公式:
c?A (3-3) A'
其中,A为区域面积,A'为区域最小外接圆面积。该指标同样认为圆形区域最紧凑,其紧凑度为1。在计算中采用最小外接圆面积作为衡量区域形状的标准。
10
江西理工大学应用科学学院2014届本科生毕业设计(论文)
c?A (3-4) L2其中,A为区域面积,L为区域最长轴长度。该指标噎人为圆形为标准形状,但它只考虑了最长轴的长度,只能概略地反映连通区域的形状。
3.3 矩
当物体是一些简单的几何图像,用以上的形状描述参数物体比较合适。如果图像的边界特征复杂,用以上的参数来描述物体的形状比较困难。对于复杂的物体,我们可以通过矩和轮廓描述符来描述复杂物体。矩特征是建立在对一个区域内部灰度值分布的统计分析基础上的,是一种统计平均的描述,可以从全局观点描述对象的整体特征。矩是一种线性特征,矩特征对于图像的旋转、比例尺度、平移具有不变性,因此可以用来描述图像中区域的形状特性。
3.4 不变矩
二维矩不变量理论是在1962年由美籍华人学者胡贵明提出的,并将矩用于形状识别。对于连续图像二维函数f(x,y),其(p+q)阶矩定义为如下黎曼积分形式:
????mp,q?
??????xpyqf(x,y)dxdy (3-5)
式中p,q=0,1,2,L。根据唯一性定理(Papoulis,1965),若f(x,y)是分段连续的,即只要在xy平面区域有非零值,则所有的各阶矩均存在,且矩序列{mp,q}
唯一的被f(x,y)所确定。反之,{mp,q}也唯一的确定了f(x,y)。 将上述矩特征量进行位置归一化,得到图像f(x,y)的中心矩:
对于数字图像f(x,y),用双重求和的形式代替上述积分,点(x,y)处的(p+q)阶矩定义为:
mp,q???xpyqf(x,y) (3-6)
xy
由此可见该中心几何矩也符合尺度不变性的特性。
11
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库基于matlab的图像形状与分类 - 毕业设计(3)在线全文阅读。
相关推荐: