他不同的特殊功能。
端口D(PD7..PD0)端口D为8位双向I/O口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,则端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口D处于高阻状态。端口D也可以用做其他不同的特殊功能.
RESET复位输入引脚。持续时间超过最小门限时间的低电平将引起系统复位。门限时间见P36Table15。持续时间小于门限间的脉冲不能保证可靠复位。
XTAL1反向振荡放大器与片内时钟操作电路的输入端。 XTAL2反向振荡放大器的输出端。
AVCC是端口A与A/D转换器的电源。不使用ADC时,该引脚应直接与VCC连接。使用ADC时应通过一个低通滤波器与VCC连接。
AREF是A/D的模拟基准输入引脚。 ※内核
为了获得最高的性能以及并行性,AVR采用了Harvard结构,具有独立的数据和程序总线。程序存储器里的指令通过一级流水线运行。CPU在执行一条指令的同时读取下一条指令(在本文称为预取)。这个概念实现了指令的单时钟周期运行。程序存储器是可以在线编程的FLASH。
快速访问寄存器文件包括32个8位通用工作寄存器,访问时间为一个时钟周期。从而实现了单时钟周期的ALU操作。在典型的ALU操作中,两个位于寄存器文件中的操作数同时被访问,然后执行运算,结果再被送回到寄存器文件。整个过程仅需一个时钟周期。
寄存器文件里有6个寄存器可以用作3个16位的间接寻址寄存器指针以寻址数据空间,实现高效的地址运算。其中一个指针还可以作为程序存储器查询表的地址指针。这些附加的功能寄存器即为16位的X、Y、Z寄存器。
ALU支持寄存器之间以及寄存器和常数之间的算术和逻辑运算。ALU也可以执行单寄存器操作。运算完成之后状态寄存器的内容得到更新以反映操作结果。
程序流程通过有/无条件的跳转指令和调用指令来控制,从而直接寻址整个地址空间。大多数指令长度为16位,亦即每个程序存储器地址都包含一条16
位或32位的指令。
程序存储器空间分为两个区:引导程序区(Boot区)和应用程序区。这两个区都有专门的锁定位以实现读和读/写保护。用于写应用程序区的SPM指令必须位于引导程序区。
在中断和调用子程序时返回地址的程序计数器(PC)保存于堆栈之中。堆栈位于通用数据SRAM,因此其深度仅受限于SRAM的大小。在复位例程里用户首先要初始化堆栈指针SP。这个指针位于I/O空间,可以进行读写访问。数据SRAM可以通过5种不同的寻址模式进行访问。
AVR存储器空间为线性的平面结构。
AVR有一个灵活的中断模块。控制寄存器位于I/O空间。状态寄存器里有全局中断使能位。每个中断在中断向量表里都有独立的中断向量。各个中断的优先级与其在中断向量表的位置有关,中断向量地址越低,优先级越高。
I/O存储器空间包含64个可以直接寻址的地址,作为CPU外设的控制寄存器、SPI,以及其他I/O功能。映射到数据空间即为寄存器文件之后的地址0x20-0x5F。
从市场角度看AVR单片机
性价比:AVR大部分型号的性价比较高,性价比表现突出的型号有:atmega48、atmega8、atmega16、atmega169P
供货方面:通用型号的AVR供货较为稳定,非常规型号的AVR样品及供货仍存在问题。
市场占有率:目前,AVR的市场占有率还是不如PIC与51,但,AVR的优点使得AVR的市场占有一直在扩展,AVR的年用量也一直在上涨。
通过学习ATmega16这个芯片,我也学会了使用C语言编程,以前在大学的时候学习51单片机都是用汇编写程序的,那时写的程序复杂冗长,现在用C编写,可以省去很多不必要的程序。程序简单,易懂。学了一学期的ATmega16使我受益匪浅。也为我下一步进行ARM的学习奠定了基础。并且我相信自己能学好我选择的这个方向。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库电网络理论读书报告(2)在线全文阅读。
相关推荐: