数轴上的动点问题练习
数轴上两点间的距离: 一、数轴与几何结合的问题
若点A、B分别是数轴上的两点,AB=5,点A距原点O有1个单位长度.则点B所表示的数是 ; 若点C是线段OB的中点,则点C所表示的数是 ;线段AC= ;
若点D是数轴上的点,点D距点B的距离为a,即线段BD=a,则点D所表示的数是 . 二、数轴与方程结合的问题
1 如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;
⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;
⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
分析:⑴设AB中点M对应的数为x,由BM=MA
所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40
⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇, 依题意有,4t+6t=120,解得t=12
(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12) 相遇C点表示的数为:—20+4t=28(或100—6t=28)
⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。P、Q为同向而行的追及问题。
依题意有,6y—4y=120,解得y=60
(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60) D点表示的数为:—20—4y=—260 (或100—6y=—260)
2 点A从原点出发沿数轴向右运动,同时点B也从原点向左运动,2秒后,两点相距12个单位长度,已知点B的速度是点A的速度的2倍,
(1) 求出点A、B的速度, 并在数轴上标出A、B两点从原点出发运动2秒时的位置。
(2) 若A、B两点从(1)中的位置开始,仍以原来的速度同时向右沿数轴运动,经过几秒,点A、B之间相距4
个单位长度?
(3) 若表示数0 的点记为O,A、B两点分别从(1)中的位置同时沿数轴向右运动,经过多长时间,OA=2OB。
3 已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;
⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在,请说明理由?
⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?
分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1
⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。 ①P在点A左侧,PA=—1—x,PB=3—x
依题意,(—1—x)+(3—x)=5,解得 x=—1.5 ②P在点B右侧,PA=x—(—1)=x+1,PB=x—3 依题意,(x+1)+(x—3)=5,解得 x=3.5
⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。故P点总位于A点右侧,B可能追上并超过A。P到A、B的距离相等,应分两种情况讨论。
设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。 ①B未追上A时,PA=PA,则P为AB中点。B在P的右侧,A在P的左侧。 PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19t
依题意有,1+4t=3—19t,解得 t=
②B追上A时,A、B重合,此时PA=PB。A、B表示同一个数。
依题意有,—1—5t=3—20t,解得 t=
即运动或分钟时,P到A、B的距离相等。
4.已知数轴上三点A、O、B表示的数为-4,0,1,点P为数轴上任一点,其对应的数是x,则(1)如果点P到点A、点B的距离相等,那么x的值是 。(2)当x= 时,点P到点A、点B的距离和是6。 (3)如果点P以每秒3个单位长度的速度从点O向左运动,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么 秒钟时,点P到点A、点B的距离相等
5. 已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。
⑴ 问多少秒后,甲到A、B、C的距离和为40个单位?
⑵ 若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶ 在⑴ ⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
解:如图1,易求得AB=14,BC=20,AC=34
⑴设x秒后,甲到A、B、C的距离和为40个单位。此时甲表示的数为—24+4x。 ①甲在AB之间时,甲到A、B的距离和为AB=14 甲到C的距离为10—(—24+4x)=34—4x 依题意,14+(34—4x)=40,解得x=2
②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x 依题意,20+4x)=40,解得x=5
即2秒或5秒,甲到A、B、C的距离和为40个单位。 ⑵是一个相向而行的相遇问题。设运动t秒相遇。 依题意有,4t+6t=34,解得t=3.4
相遇点表示的数为—24+4×3.4=—10.4 (或:10—6×3.4=—10.4)
⑶甲到A、B、C的距离和为40个单位时,甲调头返回。而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。设y秒后与乙相遇。此时甲、乙表示在数轴上为同一点,所表示的数相同。甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y
依题意有,—24+4×2—4y=10—6×2—6y,解得y=7
相遇点表示的数为:—24+4×2—4y=—44 (或:10—6×2—6y=—44)
②甲从A向右运动5秒时返回。设y秒后与乙相遇。甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y
依题意有,—24+4×5—4y=10—6×5—6y,解得y=—8(不合题意,舍去)
即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库数轴动点和方程结合题Microsoft Office Word 文档在线全文阅读。
相关推荐: