中公教育 教师考试研究院
《余弦定理》教案
一、教学目标
【知识与技能】
掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
【过程与方法】
利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。
【情感态度与价值观】
通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
二、教学重、难点
【重点】
余弦定理的发现和证明过程及其基本应用; 【难点】
难点是余弦定理的推导和证明. 三、教学过程
(一)创设情景,提出问题. 问题1:修建一条高速公路,要开凿隧道将一段山体打通.现要测量该山体底侧两点间的距离,即要测量该山体两底侧A,B两点间的距离(如图1).请想办法解决这个问题.
(二)探索新知
学生活动:提出的方法有,先航拍,然后根据比例尺算出距离;利用等高线量出距离等;也有学生提出在远处选一点C,然后量出AC,BC的长度,再测出∠ACB.△ABC是确定的,就可以计算出AB的长.接下来,请三位板演其解法.
法1:(构造直角三角形)
中公教育学员专用资料 第1页 共3页
中公教育 教师考试研究院
师:回顾刚刚解决的问题,我们很容易得到结论:在△ABC中,a,b,c是角A,B,C的对边长,则有
成立.类似的还有其他等式,
正弦定理反映的是三角形中边长与角度之间的一种数量关系,因为与正弦有关,就称为正弦定理;而上面等式中都与余弦有关,就叫做余弦定理.
问题2:刚才问题的解题过程是否可以作为余弦定理的证明过程?
设计意图:作为定理要经过严格的证明,在解决问题中培养学生严谨的思维习惯. 学生活动:经过思考得出,若把解法一作为定理的证明过程,需要对角C进行分类讨论,即分角C为锐角、直角、钝角三种情况进行证明;第二种和第三种解法可以作为余弦定理的证明过程.
教师总结:证明余弦定理,就是证明一个等式.而在证明等式的过程中,我们可以将一般三角形的问题通过作高,转化为直角三角形的问题;还可以构造向量等式,然后利用向量的数量积将其数量化;还可以建立直角坐标系,借助两点间的距离公式来解决,等等.
(三)巩固提高
中公教育学员专用资料 第2页 共3页
中公教育 教师考试研究院
(四)小结作业
本节课你收获了什么? 思考:正弦定理与余弦定理间是否存在着联系呢?你能用正弦定理证明余弦 四、板书设计 余弦定理 中公教育学员专用资料 第3页 共3页
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库中小学教师资格面试-高中数学-余弦定理在线全文阅读。
相关推荐: