应用ANSYS实现几何非线性分析方法
摘要:本文简要介绍了用ANSYS对杆系结构进行非线性分析时应当注意的问题及方法。通过Williams双杆体系这个算例来介绍几何非线性全过程分析,表明ANSYS软件丰富的单元库、强大的求解器以及便捷的后处理功能,对工程结构进行非线性分析不失为一种很好的方法。
关键词:杆系结构;几何非线性 ANSYS;全过程分析BEAM3
对于许多工程问题,结构的刚度是变化的,必须用非线性理论解决,而几何非线问题就是非线性理论中的一类。因几何变形引起的结构刚度变化的一类问题都属于几何非线性问题。几何非线性理论一般可以分成大位移小应变即有限位移理论和大位移大应变理论即有限应变理论。其核心是由于结构的几何形状或位置的改变引起结构刚度矩阵发生变化,也就是结构的平衡方程必须建立在变形后的位置上。ANSYS程序充分考虑了这两种理论。ANSYS所考虑的几何非线性通常分为3类:①大应变,即认为应变不再是有限的,结构本身的形状可以发生变化,结构的位移和转动可以是任意大小;②大位移,即结构发生了大的刚体转动,但其应变可以按照线性理论来计算,结构本身形状的改变可以忽略不计;③应力刚化,是指单元较大的应变使得单元在某个面内具有较大的应力状态,从而显著影响面外的刚度。
大应变包括大位移和应力刚化,此时应变不再是“小应变”,而是有限应变或“大应变”;大位移包括了其自身和应力刚化效应,但假定为“小应变”;应力刚化被激活时,程序计算应力刚度矩阵并将其添加到结构刚度矩阵中,应力刚度矩阵仅是应力和几何的函数,因此又称为“几何刚度”。
几何非线性问题一般指的是大位移问题,只有在材料发生塑性变形时,以及类似橡皮这样的材料才会遇到的大的应变,大变形一般包含大应变、大位移和应力刚化,而不加区分。
1几何非线性分析应注意的问题
用ANSYS进行几何非线性分析时,首先要打开大位移选项,即(NLGEOM,ON),并设置求解控制选项,可根据问题类型而定。其次是模型修正问题或缺陷问题,在大多数实际问题分析中,该项可根据实际结构修正模型,或不修正模型也可直接进行计算分析。但对于理想柱、梁侧倾的非线性分析,则必须进行模型修正(可采用实际缺陷或采用ANSYS设置),否则无法进行非线性分析。
ANSYS采用工程应变和工程应力,对数应变和真实应力,Green-Lagrange应变和第二Piola-Kirchoff应力3种应变和应力。具体采用何种应变和应力,程序根据分析类型和采用的单元自动选择。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库应用ANSYS实现几何非线性分析方法在线全文阅读。
相关推荐: